A275144 Number of 4 X n 0..2 arrays with no element equal to any value at offset (-2,-2) (-1,-2) or (0,-1) and new values introduced in order 0..2.
14, 216, 400, 1088, 2320, 6464, 17872, 49792, 139664, 392448, 1102416, 3095808, 8693584, 24414784, 68567696, 192568832, 540817040, 1518847552, 4265581328, 11979603776, 33643929040, 94486756224, 265359817104, 745245528576
Offset: 1
Keywords
Examples
Some solutions for n=5: ..0..1..0..1..2. .0..1..0..2..1. .0..1..0..1..2. .0..1..0..2..1 ..0..2..1..0..1. .1..2..1..0..1. .1..2..1..0..1. .0..2..1..2..1 ..1..0..1..0..2. .1..0..2..0..2. .2..0..2..0..2. .0..2..1..0..2 ..2..0..2..1..2. .1..2..0..1..0. .0..1..0..1..0. .2..0..2..0..2
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Row 4 of A275142.
Formula
Empirical: a(n) = 5*a(n-1) - 9*a(n-2) + 10*a(n-3) - 6*a(n-4) + a(n-5) for n>9.
Empirical g.f.: 2*x*(7 + 73*x - 277*x^2 + 446*x^3 - 798*x^4 + 969*x^5 - 1132*x^6 + 768*x^7 - 128*x^8) / ((1 - x)*(1 - 4*x + 5*x^2 - 5*x^3 + x^4)). - Colin Barker, Feb 01 2019