This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A275148 #14 Jan 01 2024 13:30:32 %S A275148 1,3,5,24,26,29,41,290,314,626,1784,6041,7556,7589,8876,26171,52454, %T A275148 153089,159731,218084,576239,1478531,2677289,2934539,3085781,3569114, %U A275148 3802301,4692866,24307841,25051934,54168539 %N A275148 Numbers m where the least natural number k such that m + k^2 is prime reaches a new record value. %C A275148 Position of records in A085099. %C A275148 On the Bunyakovsky conjecture A085099(n) exists for each n and hence this sequence is infinite since A085099 is unbounded. %H A275148 Charles R Greathouse IV, <a href="/A275148/b275148.txt">Table of n, a(n) for n = 1..40</a> %e A275148 26 + 9^2 is prime, and 26 + 1^2, 26 + 2^2, ..., 26 + 8^2 are all composite; numbers 1..25 all have some square less than 9^2 for which the sum is prime, so 26 is in this sequence. The first few primes generated by these terms are as follows: %e A275148 1 + 1^2 = 2 %e A275148 3 + 2^2 = 7 %e A275148 5 + 6^2 = 41 %e A275148 24 + 7^2 = 73 %e A275148 26 + 9^2 = 107 %e A275148 29 + 12^2 = 173 %e A275148 41 + 24^2 = 617 %e A275148 290 + 27^2 = 1019 %e A275148 314 + 45^2 = 2339 %e A275148 626 + 69^2 = 5387 %e A275148 1784 + 93^2 = 10433 %e A275148 6041 + 114^2 = 19037 %o A275148 (PARI) A085099(n)=my(k); while(!isprime(k++^2+n), ); k %o A275148 r=0; for(n=1,1e9, t=A085099(n); if(t>r, r=t; print1(n", "))) %Y A275148 Cf. A085099. %K A275148 nonn %O A275148 1,2 %A A275148 _Charles R Greathouse IV_, Jul 17 2016