A275169 Positive integers not in the form x^3 + 2*y^2 + z^2 with x,y,z nonnegative integers.
15, 21, 47, 53, 79, 85, 92, 111, 117, 120, 181, 183, 245, 309, 311, 335, 372, 373, 398, 405, 421, 437, 447, 501, 565, 573, 629, 636, 645, 655, 693, 757, 791, 807, 820, 821, 853, 869, 885, 888, 949, 967, 1013, 1045, 1077, 1141, 1205, 1223, 1269, 1271, 1303, 1461, 1555, 1591, 1613, 1653, 2087, 2101, 2255, 2421
Offset: 1
Keywords
Examples
a(1) = 15 since 15 is the least positive integer not in the form x^3 + 2*y^2 + z^2 with x,y,z nonnegative integers.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..174
Crossrefs
Programs
-
Mathematica
SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]] n=0;Do[Do[If[SQ[m-x^3-2*y^2],Goto[aa]],{x,0,m^(1/3)},{y,0,Sqrt[(m-x^3)/2]}];n=n+1;Print[n," ",m];Label[aa];Continue,{m,1,2421}]
Comments