cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A275157 Index when the partial tiling described in A275152 is perfect (i.e., all filled squares are contiguous).

This page as a plain text file.
%I A275157 #13 Nov 24 2016 09:45:21
%S A275157 1,2,3,4,6,7,8,10,12,13,14,15,16,19,23,25,27,28,34,35,36,37,44,48,50,
%T A275157 53,55,60,62,63,66,67,68,69,83,87,91,93,95,100,103,106,108,110,111,
%U A275157 113,115,120,123,126,127,130,131,132,133,134,156,165,176,181,185
%N A275157 Index when the partial tiling described in A275152 is perfect (i.e., all filled squares are contiguous).
%H A275157 Rémy Sigrist, <a href="/A275157/b275157.txt">Table of n, a(n) for n = 1..2500</a>
%e A275157 The following table depicts the first partial tilings described in A275152 ("X" denotes a filled square); perfect tilings are marked as such:
%e A275157 Index  Perfect ?  Partial tiling described in A275152
%e A275157 -----  ---------  -----------------------------------
%e A275157 1      *          X
%e A275157 2      *          XX
%e A275157 3      *          XXXX
%e A275157 4      *          XXXXX
%e A275157 5                 XXXXXX X
%e A275157 6      *          XXXXXXXX
%e A275157 7      *          XXXXXXXXXX
%e A275157 8      *          XXXXXXXXXXXXX
%e A275157 9                 XXXXXXXXXXXXXX  X
%e A275157 10     *          XXXXXXXXXXXXXXXXXX
%e A275157 11                XXXXXXXXXXXXXXXXXXX X
%e A275157 12     *          XXXXXXXXXXXXXXXXXXXXXXX
%e A275157 13     *          XXXXXXXXXXXXXXXXXXXXXXXXX
%e A275157 14     *          XXXXXXXXXXXXXXXXXXXXXXXXXXXX
%e A275157 15     *          XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
%e A275157 16     *          XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
%e A275157 17                XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX   X
%e A275157 18                XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XX
%e A275157 19     *          XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
%e A275157 20                XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX X
%e A275157 21                XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX X
%e A275157 22                XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XX
%e A275157 23     *          XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
%e A275157 24                XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX X
%e A275157 25     *          XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
%Y A275157 Cf. A275152.
%K A275157 nonn
%O A275157 1,2
%A A275157 _Rémy Sigrist_, Nov 13 2016