This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A275157 #13 Nov 24 2016 09:45:21 %S A275157 1,2,3,4,6,7,8,10,12,13,14,15,16,19,23,25,27,28,34,35,36,37,44,48,50, %T A275157 53,55,60,62,63,66,67,68,69,83,87,91,93,95,100,103,106,108,110,111, %U A275157 113,115,120,123,126,127,130,131,132,133,134,156,165,176,181,185 %N A275157 Index when the partial tiling described in A275152 is perfect (i.e., all filled squares are contiguous). %H A275157 Rémy Sigrist, <a href="/A275157/b275157.txt">Table of n, a(n) for n = 1..2500</a> %e A275157 The following table depicts the first partial tilings described in A275152 ("X" denotes a filled square); perfect tilings are marked as such: %e A275157 Index Perfect ? Partial tiling described in A275152 %e A275157 ----- --------- ----------------------------------- %e A275157 1 * X %e A275157 2 * XX %e A275157 3 * XXXX %e A275157 4 * XXXXX %e A275157 5 XXXXXX X %e A275157 6 * XXXXXXXX %e A275157 7 * XXXXXXXXXX %e A275157 8 * XXXXXXXXXXXXX %e A275157 9 XXXXXXXXXXXXXX X %e A275157 10 * XXXXXXXXXXXXXXXXXX %e A275157 11 XXXXXXXXXXXXXXXXXXX X %e A275157 12 * XXXXXXXXXXXXXXXXXXXXXXX %e A275157 13 * XXXXXXXXXXXXXXXXXXXXXXXXX %e A275157 14 * XXXXXXXXXXXXXXXXXXXXXXXXXXXX %e A275157 15 * XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX %e A275157 16 * XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX %e A275157 17 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX X %e A275157 18 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XX %e A275157 19 * XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX %e A275157 20 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX X %e A275157 21 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX X %e A275157 22 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XX %e A275157 23 * XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX %e A275157 24 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX X %e A275157 25 * XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX %Y A275157 Cf. A275152. %K A275157 nonn %O A275157 1,2 %A A275157 _Rémy Sigrist_, Nov 13 2016