A275168 Positive integers not of the form x^3 + 3*y^2 + z^2 with x,y,z nonnegative integers.
6, 18, 23, 41, 42, 59, 78, 86, 96, 114, 115, 123, 142, 187, 195, 205, 213, 214, 240, 261, 262, 266, 303, 322, 329, 330, 383, 423, 478, 501, 510, 581, 610, 618, 642, 682, 690, 698, 761, 774, 807, 865, 870, 906, 959, 963, 990, 1206, 1222, 1230, 1234, 1302, 1312, 1314, 1320, 1346, 1411, 1697, 1706, 1781
Offset: 1
Keywords
Examples
a(1) = 6 since 1 = 0^3 + 3*0^2 + 1^2, 2 = 1^3 + 3*0^2 + 1^2, 3 = 0^3 + 3*1^2 + 0^2, 4 = 0^3 + 3*1^2 + 1^2, 5 = 1^3 + 3*1^2 + 1^2, but 6 cannot be written as x^3 + 3*y^2 + z^2 with x,y,z nonnegative integers.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..150
Crossrefs
Programs
-
Mathematica
SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]] n=0;Do[Do[If[SQ[m-x^3-3*y^2],Goto[aa]],{x,0,m^(1/3)},{y,0,Sqrt[(m-x^3)/3]}];n=n+1;Print[n," ",m];Label[aa];Continue,{m,1,1800}]
Comments