cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A275168 Positive integers not of the form x^3 + 3*y^2 + z^2 with x,y,z nonnegative integers.

Original entry on oeis.org

6, 18, 23, 41, 42, 59, 78, 86, 96, 114, 115, 123, 142, 187, 195, 205, 213, 214, 240, 261, 262, 266, 303, 322, 329, 330, 383, 423, 478, 501, 510, 581, 610, 618, 642, 682, 690, 698, 761, 774, 807, 865, 870, 906, 959, 963, 990, 1206, 1222, 1230, 1234, 1302, 1312, 1314, 1320, 1346, 1411, 1697, 1706, 1781
Offset: 1

Views

Author

Zhi-Wei Sun, Jul 18 2016

Keywords

Comments

Conjecture: The sequence has totally 150 terms as listed in the b-file the largest of which is 182842. Thus any integer n > 182842 can be written as x^3 + 3*y^2 + z^2 with x,y,z nonnegative integers.
We note that the sequence has no term greater than 182842 and not exceeding 10^6.
See also A275169 for a similar conjecture.
It is known that for any positive integers a,b,c there are infinitely many positive integers not of the form a*x^2 + b*y^2 + c*z^2 with x,y,z nonnegative integers.

Examples

			a(1) = 6 since 1 = 0^3 + 3*0^2 + 1^2, 2 = 1^3 + 3*0^2 + 1^2, 3 = 0^3 + 3*1^2 + 0^2, 4 = 0^3 + 3*1^2 + 1^2, 5 = 1^3 + 3*1^2 + 1^2, but 6 cannot be written as x^3 + 3*y^2 + z^2 with x,y,z nonnegative integers.
		

Crossrefs

Programs

  • Mathematica
    SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]]
    n=0;Do[Do[If[SQ[m-x^3-3*y^2],Goto[aa]],{x,0,m^(1/3)},{y,0,Sqrt[(m-x^3)/3]}];n=n+1;Print[n," ",m];Label[aa];Continue,{m,1,1800}]