cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A275178 Number of n X 3 0..2 arrays with no element equal to any value at offset (-2,-1) (-1,0) or (-1,1) and new values introduced in order 0..2.

Original entry on oeis.org

5, 16, 25, 41, 85, 181, 389, 834, 1781, 3799, 8110, 17328, 37032, 79130, 169059, 361178, 771648, 1648657, 3522441, 7525825, 16079113, 34353402, 73396957, 156814715, 335039190, 715820740, 1529371036, 3267543982, 6981199507
Offset: 1

Views

Author

R. H. Hardin, Jul 19 2016

Keywords

Examples

			Some solutions for n=4:
..0..0..1. .0..0..1. .0..1..2. .0..0..1. .0..0..1. .0..0..0. .0..0..1
..2..2..0. .2..2..0. .2..0..1. .2..2..0. .2..2..2. .1..2..2. .2..2..0
..1..1..2. .0..1..2. .1..2..2. .0..1..1. .1..1..1. .0..1..1. .1..1..1
..0..0..1. .2..0..1. .0..0..1. .2..0..0. .2..0..0. .2..2..0. .0..0..0
		

Crossrefs

Column 3 of A275183.

Formula

Empirical: a(n) = 4*a(n-1) - 6*a(n-2) + 5*a(n-3) - a(n-4) - a(n-5) for n>8.
Empirical g.f.: x*(5 - 4*x - 9*x^2 + 12*x^3 - 4*x^4 - 17*x^5 + 11*x^6 + 5*x^7) / ((1 - x)*(1 - 3*x + 3*x^2 - 2*x^3 - x^4)). - Colin Barker, Feb 01 2019

A275179 Number of n X 4 0..2 arrays with no element equal to any value at offset (-2,-1) (-1,0) or (-1,1) and new values introduced in order 0..2.

Original entry on oeis.org

14, 64, 89, 141, 353, 914, 2386, 6228, 16249, 42451, 111108, 291065, 762378, 1995896, 5223852, 13673069, 35794346, 93714905, 245360591, 642367172, 1681704625, 4402670689, 11526266952, 30176270194, 79002891883, 206832552922
Offset: 1

Views

Author

R. H. Hardin, Jul 19 2016

Keywords

Examples

			Some solutions for n=4:
..0..1..1..1. .0..1..1..2. .0..0..0..1. .0..0..1..2. .0..1..1..2
..2..0..0..0. .2..2..0..1. .1..2..2..0. .2..2..0..1. .2..2..0..0
..1..2..2..2. .0..1..2..2. .0..1..1..2. .1..1..2..2. .0..1..2..2
..0..1..1..1. .2..0..1..1. .2..0..0..1. .2..0..1..1. .2..0..1..1
		

Crossrefs

Column 4 of A275183.

Formula

Empirical: a(n) = 8*a(n-1) - 28*a(n-2) + 57*a(n-3) - 70*a(n-4) + 47*a(n-5) - 12*a(n-6) - a(n-7) - 2*a(n-8) + a(n-9) for n>12.
Empirical g.f.: x*(14 - 48*x - 31*x^2 + 423*x^3 - 951*x^4 + 787*x^5 + 311*x^6 - 920*x^7 + 378*x^8 + 125*x^9 + 29*x^10 - 32*x^11) / ((1 - 3*x + x^2)*(1 - 5*x + 12*x^2 - 16*x^3 + 10*x^4 - x^5 - x^6 - x^7)). - Colin Barker, Feb 01 2019

A275180 Number of n X 5 0..2 arrays with no element equal to any value at offset (-2,-1) (-1,0) or (-1,1) and new values introduced in order 0..2.

Original entry on oeis.org

41, 256, 317, 482, 1465, 4603, 14643, 46799, 149772, 479722, 1538582, 4942028, 15891866, 51127466, 164489244, 529125544, 1701961499, 5474696445, 17611978722, 56660560468, 182287542046, 586443173365, 1886643497675, 6069534405199
Offset: 1

Views

Author

R. H. Hardin, Jul 19 2016

Keywords

Comments

Column 5 of A275183.

Examples

			Some solutions for n=4
..0..1..2..2..0. .0..0..1..2..2. .0..0..1..2..0. .0..1..1..2..2
..2..0..0..1..2. .2..2..0..0..1. .2..2..0..1..1. .2..2..0..0..1
..1..1..2..0..1. .0..1..1..2..0. .1..1..2..0..0. .1..1..2..2..0
..2..0..1..2..2. .2..0..0..1..1. .0..0..1..2..2. .2..0..1..1..1
		

Crossrefs

Cf. A275183.

Formula

Empirical: a(n) = 16*a(n-1) -120*a(n-2) +561*a(n-3) -1820*a(n-4) +4313*a(n-5) -7688*a(n-6) +10549*a(n-7) -11473*a(n-8) +10333*a(n-9) -8076*a(n-10) +5538*a(n-11) -3198*a(n-12) +1466*a(n-13) -508*a(n-14) +120*a(n-15) -12*a(n-16) for n > 21.

A275181 Number of nX6 0..2 arrays with no element equal to any value at offset (-2,-1) (-1,0) or (-1,1) and new values introduced in order 0..2.

Original entry on oeis.org

122, 1024, 1129, 1651, 6081, 23313, 90793, 355258, 1392050, 5466938, 21539426, 85093786, 336588196, 1331473727, 5265942503, 20828817622, 82420863039, 326283110365, 1291905762290, 5114955533848, 20248639590431, 80153872862995
Offset: 1

Views

Author

R. H. Hardin, Jul 19 2016

Keywords

Comments

Column 6 of A275183.

Examples

			Some solutions for n=4
..0..0..1..1..2..2. .0..0..1..2..0..1. .0..1..1..2..2..0. .0..1..1..1..2..2
..2..2..2..0..0..1. .2..2..0..1..2..2. .2..2..0..1..1..1. .2..0..0..0..0..1
..1..1..1..2..2..0. .0..1..2..0..0..1. .1..1..2..0..0..0. .1..2..2..2..2..0
..2..0..0..1..1..2. .2..0..1..1..2..0. .0..0..1..1..2..2. .0..0..1..1..1..2
		

Crossrefs

Cf. A275183.

Formula

Empirical: a(n) = 32*a(n-1) -496*a(n-2) +4961*a(n-3) -35960*a(n-4) +201091*a(n-5) -902032*a(n-6) +3333981*a(n-7) -10358635*a(n-8) +27489359*a(n-9) -63147252*a(n-10) +127012656*a(n-11) -225853366*a(n-12) +357739737*a(n-13) -507298821*a(n-14) +645538311*a(n-15) -736806613*a(n-16) +752032038*a(n-17) -682548311*a(n-18) +546209109*a(n-19) -380703800*a(n-20) +226996531*a(n-21) -112609944*a(n-22) +44283885*a(n-23) -12407657*a(n-24) +1618639*a(n-25) +454684*a(n-26) -304782*a(n-27) +64173*a(n-28) +1145*a(n-29) -3123*a(n-30) +439*a(n-31) +34*a(n-32) -12*a(n-33) -a(n-34) for n>39

A275182 Number of nX7 0..2 arrays with no element equal to any value at offset (-2,-1) (-1,0) or (-1,1) and new values introduced in order 0..2.

Original entry on oeis.org

365, 4096, 4021, 5653, 25241, 117916, 561044, 2688402, 12931103, 62408531, 302138208, 1466387881, 7128875693, 34691973269, 168923525976, 822823965071, 4008952988381, 19536216274450, 95219416747615, 464168982600409
Offset: 1

Views

Author

R. H. Hardin, Jul 19 2016

Keywords

Comments

Column 7 of A275183.

Examples

			Some solutions for n=4
..0..0..0..0..1..2..0. .0..0..1..2..0..0..1. .0..1..1..1..2..2..0
..2..2..2..2..0..1..2. .2..2..0..1..1..2..2. .2..2..0..0..1..1..2
..0..1..1..1..2..0..1. .1..1..2..0..0..1..1. .1..1..2..2..0..0..0
..2..0..0..0..1..2..2. .2..0..1..1..2..0..0. .2..0..0..1..1..2..2
		

Crossrefs

Cf. A275183.

Formula

Empirical recurrence of order 67 (see link above)

A275184 Number of 4 X n 0..2 arrays with no element equal to any value at offset (-2,-1) (-1,0) or (-1,1) and new values introduced in order 0..2.

Original entry on oeis.org

4, 12, 41, 141, 482, 1651, 5653, 19356, 66277, 226937, 777050, 2660679, 9110369, 31194604, 106812721, 365734965, 1252304626, 4287987275, 14682397949, 50273658876, 172140871373, 589423572097, 2018231606314, 6910580115135
Offset: 1

Views

Author

R. H. Hardin, Jul 19 2016

Keywords

Examples

			Some solutions for n=4:
..0..1..2..2. .0..1..2..0. .0..0..1..1. .0..0..1..1. .0..1..1..2
..2..0..0..1. .2..0..1..1. .2..2..2..0. .2..2..0..0. .2..0..0..0
..1..2..2..0. .1..2..2..0. .1..1..1..2. .0..1..1..2. .1..2..2..2
..0..1..1..2. .0..0..1..2. .0..0..0..1. .2..0..0..1. .0..0..1..1
		

Crossrefs

Row 4 of A275183.

Formula

Empirical: a(n) = 2*a(n-1) + 4*a(n-2) + 3*a(n-3) for n>4.
Empirical g.f.: x*(4 + 4*x + x^2 - x^3) / (1 - 2*x - 4*x^2 - 3*x^3). - Colin Barker, Feb 01 2019

A275185 Number of 5 X n 0..2 arrays with no element equal to any value at offset (-2,-1) (-1,0) or (-1,1) and new values introduced in order 0..2.

Original entry on oeis.org

8, 21, 85, 353, 1465, 6081, 25241, 104769, 434873, 1805057, 7492377, 31099137, 129085369, 535803713, 2223998105, 9231305153, 38317026745, 159045174401, 660159977241, 2740172389249, 11373826014393, 47210138571457
Offset: 1

Views

Author

R. H. Hardin, Jul 19 2016

Keywords

Examples

			Some solutions for n=4:
..0..0..0..1. .0..0..0..1. .0..1..1..1. .0..1..1..1. .0..0..0..1
..2..2..2..2. .1..2..2..0. .2..0..0..0. .2..2..0..0. .1..2..2..0
..1..1..1..1. .0..1..1..2. .1..1..2..2. .1..1..2..2. .0..1..1..2
..0..0..0..0. .2..2..0..0. .0..0..1..1. .0..0..0..1. .2..0..0..0
..2..2..2..2. .0..1..2..2. .1..2..2..0. .2..2..2..0. .1..2..2..2
		

Crossrefs

Row 5 of A275183.

Formula

Empirical: a(n) = 2*a(n-1) + 7*a(n-2) + 8*a(n-3) for n>5.
Empirical g.f.: x*(8 + 5*x - 13*x^2 - 28*x^3 - 4*x^4) / (1 - 2*x - 7*x^2 - 8*x^3). - Colin Barker, Feb 01 2019

A275186 Number of 6 X n 0..2 arrays with no element equal to any value at offset (-2,-1) (-1,0) or (-1,1) and new values introduced in order 0..2.

Original entry on oeis.org

16, 37, 181, 914, 4603, 23313, 117916, 596625, 3018913, 15274618, 77286999, 391054261, 1978648444, 10011529573, 50656125413, 256308871218, 1296866472387, 6561859014441, 33201563019036, 167992603723721, 850005614599481
Offset: 1

Views

Author

R. H. Hardin, Jul 19 2016

Keywords

Examples

			Some solutions for n=4:
..0..0..1..2. .0..0..1..2. .0..0..1..1. .0..0..1..2. .0..1..2..0
..2..2..0..1. .2..2..0..1. .1..2..0..0. .1..2..0..1. .2..0..1..2
..1..1..2..2. .1..1..2..2. .0..1..2..2. .0..1..2..2. .1..2..0..1
..2..0..0..1. .0..0..1..1. .2..0..0..1. .2..0..1..1. .0..1..2..0
..1..2..2..0. .2..2..0..0. .1..2..2..0. .1..2..2..0. .2..0..1..2
..0..1..1..2. .1..1..1..2. .0..1..1..1. .0..0..1..2. .1..2..0..1
		

Crossrefs

Row 6 of A275183.

Formula

Empirical: a(n) = 2*a(n-1) + 12*a(n-2) + 19*a(n-3) - 4*a(n-4) - 12*a(n-5) - 16*a(n-6) for n>7.
Empirical g.f.: x*(16 + 5*x - 85*x^2 - 196*x^3 - 36*x^4 + 40*x^5 + 112*x^6) / ((1 - x)*(1 - x - 13*x^2 - 32*x^3 - 28*x^4 - 16*x^5)). - Colin Barker, Feb 01 2019

A275187 Number of 7 X n 0..2 arrays with no element equal to any value at offset (-2,-1) (-1,0) or (-1,1) and new values introduced in order 0..2.

Original entry on oeis.org

32, 65, 389, 2386, 14643, 90793, 561044, 3472521, 21488129, 132962186, 822814111, 5091567885, 31507279460, 194970115869, 1206493799669, 7465907869266, 46199772632427, 285888830879985, 1769108624416628, 10947420840825089
Offset: 1

Views

Author

R. H. Hardin, Jul 19 2016

Keywords

Examples

			Some solutions for n=4:
..0..0..1..1. .0..1..2..0. .0..0..1..1. .0..1..2..2. .0..0..0..1
..1..2..0..0. .2..0..1..1. .2..2..2..0. .2..0..0..1. .2..2..2..0
..0..1..1..2. .1..2..2..0. .0..1..1..2. .1..1..2..0. .0..1..1..2
..2..2..0..1. .0..1..1..2. .2..0..0..1. .0..0..1..2. .2..0..0..1
..1..1..2..2. .2..2..0..1. .1..2..2..2. .2..2..0..0. .1..2..2..0
..0..0..1..1. .1..1..2..0. .0..1..1..1. .1..1..2..2. .0..0..1..2
..2..2..0..0. .0..0..1..1. .2..2..0..0. .0..0..1..1. .2..2..0..1
		

Crossrefs

Row 7 of A275183.

Formula

Empirical: a(n) = 2*a(n-1) + 20*a(n-2) + 43*a(n-3) - 20*a(n-4) - 92*a(n-5) - 176*a(n-6) - 16*a(n-7) - 16*a(n-8) + 64*a(n-9) for n>10.
Empirical g.f.: x*(32 + x - 381*x^2 - 1068*x^3 - 64*x^4 + 1304*x^5 + 3392*x^6 + 384*x^7 + 496*x^8 - 1216*x^9) / (1 - 2*x - 20*x^2 - 43*x^3 + 20*x^4 + 92*x^5 + 176*x^6 + 16*x^7 + 16*x^8 - 64*x^9). - Colin Barker, Feb 01 2019

A275177 Number of n X n 0..2 arrays with no element equal to any value at offset (-2,-1), (-1,0) or (-1,1) and new values introduced in order 0..2.

Original entry on oeis.org

1, 4, 25, 141, 1465, 23313, 561044, 20397794, 1120217646, 93298660085, 11806084302586, 2272026396983803, 664988521276834246
Offset: 1

Views

Author

R. H. Hardin, Jul 19 2016

Keywords

Comments

Diagonal of A275183.

Examples

			Some solutions for n=4
..0..0..1..2. .0..0..0..1. .0..0..0..1. .0..0..0..1. .0..0..0..1
..2..2..0..1. .2..2..2..0. .1..2..2..0. .1..2..2..0. .1..2..2..0
..0..1..2..2. .0..1..1..2. .0..1..1..2. .0..1..1..1. .0..1..1..2
..2..0..0..1. .2..0..0..1. .2..0..0..1. .2..0..0..0. .2..2..0..0
		

Crossrefs

Cf. A275183.
Showing 1-10 of 10 results.