cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A275198 Triangle, read by rows, formed by reading Pascal's triangle (A007318) mod 14.

This page as a plain text file.
%I A275198 #40 May 01 2025 15:40:51
%S A275198 1,1,1,1,2,1,1,3,3,1,1,4,6,4,1,1,5,10,10,5,1,1,6,1,6,1,6,1,1,7,7,7,7,
%T A275198 7,7,1,1,8,0,0,0,0,0,8,1,1,9,8,0,0,0,0,8,9,1,1,10,3,8,0,0,0,8,3,10,1,
%U A275198 1,11,13,11,8,0,0,8,11,13,11,1,1,12,10,10,5,8,0,8,5,10,10,12,1,1,13,8,6,1,13,8,8,13,1,6,8,13,1,1,0,7,0,7,0,7,2,7,0,7,0,7,0,1
%N A275198 Triangle, read by rows, formed by reading Pascal's triangle (A007318) mod 14.
%H A275198 Ilya Gutkovskiy, <a href="/A275198/a275198.pdf">Illustrations (triangle formed by reading Pascal's triangle mod m)</a>
%H A275198 <a href="/index/Pas#Pascal">Index entries for triangles and arrays related to Pascal's triangle</a>
%F A275198 T(n, k) = binomial(n, k) mod 14.
%F A275198 a(n) = A070696(A007318(n)).
%e A275198 Triangle begins:
%e A275198                       1,
%e A275198                     1,  1,
%e A275198                   1,  2,  1,
%e A275198                 1,  3,  3,  1,
%e A275198               1,  4,  6,  4,  1,
%e A275198             1,  5, 10, 10,  5,  1,
%e A275198           1,  6,  1,  6,  1,  6,  1,
%e A275198         1,  7,  7,  7,  7,  7,  7,  1,
%e A275198       1,  8,  0,  0,  0,  0,  0,  8,  1,
%e A275198     1,  9,  8,  0,  0,  0,  0,  8,  9,  1,
%e A275198   1, 10,  3,  8,  0,  0,  0,  8,  3, 10,  1,
%e A275198   ...
%t A275198 Mod[Flatten[Table[Binomial[n, k], {n, 0, 14}, {k, 0, n}]], 14]
%o A275198 (Python)
%o A275198 from math import comb, isqrt
%o A275198 from sympy.ntheory.modular import crt
%o A275198 def A275198(n):
%o A275198     w, c = n-((r:=(m:=isqrt(k:=n+1<<1))-(k<=m*(m+1)))*(r+1)>>1), 1
%o A275198     d = int(not ~r & w)
%o A275198     while True:
%o A275198         r, a = divmod(r,7)
%o A275198         w, b = divmod(w,7)
%o A275198         c = c*comb(a,b)%7
%o A275198         if r<7 and w<7:
%o A275198             c = c*comb(r,w)%7
%o A275198             break
%o A275198     return crt([7,2],[c,d])[0] # _Chai Wah Wu_, May 01 2025
%Y A275198 Cf. A007318, A070696.
%Y A275198 Sequences based on the triangles formed by reading Pascal's triangle mod m: A047999 (m = 2), A083093 (m = 3), A034931 (m = 4), A095140 (m = 5), A095141 (m = 6), A095142 (m = 7), A034930 (m = 8), A095143 (m = 9), A008975 (m = 10), A095144 (m = 11), A095145 (m = 12), (this sequence) (m = 14), A034932 (m = 16).
%K A275198 nonn,tabl
%O A275198 0,5
%A A275198 _Ilya Gutkovskiy_, Aug 11 2016