This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A275198 #40 May 01 2025 15:40:51 %S A275198 1,1,1,1,2,1,1,3,3,1,1,4,6,4,1,1,5,10,10,5,1,1,6,1,6,1,6,1,1,7,7,7,7, %T A275198 7,7,1,1,8,0,0,0,0,0,8,1,1,9,8,0,0,0,0,8,9,1,1,10,3,8,0,0,0,8,3,10,1, %U A275198 1,11,13,11,8,0,0,8,11,13,11,1,1,12,10,10,5,8,0,8,5,10,10,12,1,1,13,8,6,1,13,8,8,13,1,6,8,13,1,1,0,7,0,7,0,7,2,7,0,7,0,7,0,1 %N A275198 Triangle, read by rows, formed by reading Pascal's triangle (A007318) mod 14. %H A275198 Ilya Gutkovskiy, <a href="/A275198/a275198.pdf">Illustrations (triangle formed by reading Pascal's triangle mod m)</a> %H A275198 <a href="/index/Pas#Pascal">Index entries for triangles and arrays related to Pascal's triangle</a> %F A275198 T(n, k) = binomial(n, k) mod 14. %F A275198 a(n) = A070696(A007318(n)). %e A275198 Triangle begins: %e A275198 1, %e A275198 1, 1, %e A275198 1, 2, 1, %e A275198 1, 3, 3, 1, %e A275198 1, 4, 6, 4, 1, %e A275198 1, 5, 10, 10, 5, 1, %e A275198 1, 6, 1, 6, 1, 6, 1, %e A275198 1, 7, 7, 7, 7, 7, 7, 1, %e A275198 1, 8, 0, 0, 0, 0, 0, 8, 1, %e A275198 1, 9, 8, 0, 0, 0, 0, 8, 9, 1, %e A275198 1, 10, 3, 8, 0, 0, 0, 8, 3, 10, 1, %e A275198 ... %t A275198 Mod[Flatten[Table[Binomial[n, k], {n, 0, 14}, {k, 0, n}]], 14] %o A275198 (Python) %o A275198 from math import comb, isqrt %o A275198 from sympy.ntheory.modular import crt %o A275198 def A275198(n): %o A275198 w, c = n-((r:=(m:=isqrt(k:=n+1<<1))-(k<=m*(m+1)))*(r+1)>>1), 1 %o A275198 d = int(not ~r & w) %o A275198 while True: %o A275198 r, a = divmod(r,7) %o A275198 w, b = divmod(w,7) %o A275198 c = c*comb(a,b)%7 %o A275198 if r<7 and w<7: %o A275198 c = c*comb(r,w)%7 %o A275198 break %o A275198 return crt([7,2],[c,d])[0] # _Chai Wah Wu_, May 01 2025 %Y A275198 Cf. A007318, A070696. %Y A275198 Sequences based on the triangles formed by reading Pascal's triangle mod m: A047999 (m = 2), A083093 (m = 3), A034931 (m = 4), A095140 (m = 5), A095141 (m = 6), A095142 (m = 7), A034930 (m = 8), A095143 (m = 9), A008975 (m = 10), A095144 (m = 11), A095145 (m = 12), (this sequence) (m = 14), A034932 (m = 16). %K A275198 nonn,tabl %O A275198 0,5 %A A275198 _Ilya Gutkovskiy_, Aug 11 2016