cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A275202 Subword complexity (number of distinct blocks of length n) of the period doubling sequence A096268.

This page as a plain text file.
%I A275202 #35 Aug 09 2022 07:05:59
%S A275202 2,3,5,6,8,10,11,12,14,16,18,20,21,22,23,24,26,28,30,32,34,36,38,40,
%T A275202 41,42,43,44,45,46,47,48,50,52,54,56,58,60,62,64,66,68,70,72,74,76,78,
%U A275202 80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,98,100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132,134,136,138,140,142,144,146,148,150,152,154,156,158,160,161,162,163,164,165
%N A275202 Subword complexity (number of distinct blocks of length n) of the period doubling sequence A096268.
%H A275202 Jinyuan Wang, <a href="/A275202/b275202.txt">Table of n, a(n) for n = 1..1000</a>
%H A275202 Scott Balchin and Dan Rust, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL20/Rust/rust3.html">Computations for Symbolic Substitutions</a>, Journal of Integer Sequences, Vol. 20 (2017), Article 17.4.1.
%H A275202 Hsien-Kuei Hwang, S. Janson, and T.-H. Tsai, <a href="http://140.109.74.92/hk/wp-content/files/2016/12/aat-hhrr-1.pdf">Exact and asymptotic solutions of the recurrence f(n) = f(floor(n/2)) + f(ceiling(n/2)) + g(n): theory and applications</a>, Preprint, 2016.
%H A275202 Hsien-Kuei Hwang, S. Janson, and T.-H. Tsai, <a href="https://doi.org/10.1145/3127585">Exact and Asymptotic Solutions of a Divide-and-Conquer Recurrence Dividing at Half: Theory and Applications</a>, ACM Transactions on Algorithms, 13:4 (2017), #47; DOI: 10.1145/3127585.
%F A275202 a(n) = A005942(n+1)/2, and the latter satisfies a simple recurrence. - _N. J. A. Sloane_, Jun 04 2019
%F A275202 Proof: let b(n) = A096268(n) and c(n) = b(2n+1). For n >= 2, distinct blocks of length 2n are of the form 0_0_...0_ or _0_0..._0, and distinct blocks of length 2n-1 are of the form 0_0_..._0 or _0_0...0_. Therefore, a(2n) is twice the n-subword complexity of {c(k)}, and a(2n-1) is the sum of (n-1)-subword complexity and n-subword complexity of {c(k)}. Note that n-subword complexity of {c(k)} is a(n) because c(2k) = b(4k+1) = 1, c(4k+1) = b(8k+3) = b(2k) = 0 and c(4k+3) = b(8k+7) = b(2k+1) = c(k). In conclusion, a(2n) = 2a(n) and a(2n-1) = a(n-1) + a(n), with a(1) = 2 and a(2) = 3. So a(n) = A005942(n+1)/2. - _Jinyuan Wang_, Feb 27 2020
%e A275202 For n = 1 there are two words {0,1}.
%e A275202 For n = 2 there are three words {00,01,10}.
%e A275202 For n = 3 there are five words {000,001,010,100,101}.
%p A275202 a := proc(n) option remember; if n = 1 then 2 elif n = 2 then 3 else a(iquo(n,2)) + a(iquo(n+1,2)) end if; end proc:
%p A275202 seq(a(n), n = 1..100); # _Peter Bala_, Aug 05 2022
%t A275202 t = Nest[Flatten[# /. {0 -> {1, 0}, 1 -> {0, 0}}] &, {1}, 12]; Table[2^n - Count[SequencePosition[t, #] & /@ Tuples[{0, 1}, n], {}], {n, 16}] (* _Michael De Vlieger_, Jul 19 2016, Version 10.1, after _Robert G. Wilson v_ at A096268 *)
%o A275202 (PARI) lista(nn) = {my(v=vector(nn-nn%2)); v[1]=2; v[2]=3; for(n=2, nn\2, v[2*n-1]=v[n-1]+v[n]; v[2*n]=2*v[n]); v; } \\ _Jinyuan Wang_, Feb 27 2020
%o A275202 (PARI) a(n) = my(k=logint(n,2)-1); if(bittest(n,k), n + 2<<k, n<<1 - 1<<k); \\ _Kevin Ryde_, Aug 09 2022
%Y A275202 Cf. A006165, A096268, A035263, A005942.
%K A275202 nonn,easy
%O A275202 1,1
%A A275202 _Daniel Rust_, Jul 19 2016