cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A275205 Partial sums of the Dirichlet inverse of the Euler totient function.

This page as a plain text file.
%I A275205 #17 Jan 29 2019 12:13:01
%S A275205 1,0,-2,-3,-7,-5,-11,-12,-14,-10,-20,-18,-30,-24,-16,-17,-33,-31,-49,
%T A275205 -45,-33,-23,-45,-43,-47,-35,-37,-31,-59,-67,-97,-98,-78,-62,-38,-36,
%U A275205 -72,-54,-30,-26,-66,-78,-120,-110,-102,-80,-126,-124,-130
%N A275205 Partial sums of the Dirichlet inverse of the Euler totient function.
%C A275205 The matrix A191898 seen as a 2n X 2n block matrix A = {{a, b},{c, d}} where a, b, c and d are n X n matrices, A191898 has the property that the sum: 1 - a - d = trace(A191898). This is demonstrated by the second Mathematica program below.
%H A275205 Vaclav Kotesovec, <a href="/A275205/b275205.txt">Table of n, a(n) for n = 1..10000</a>
%F A275205 a(n) = Trace of matrix A191898.
%F A275205 a(n) = Sum_{k=1..n} A023900(k).
%F A275205 a(n) = 2 - Sum_{m=1..n} Sum_{k=1..n} A191898(m,k).
%F A275205 a(n) = 1 - Sum_{m=1..n} Sum_{k=1..n} A191898(m,k) - Sum_{m=n+1..2*n} Sum_{k=n+1..2*n} A191898(m,k).
%F A275205 a(n) = Sum_{k=1..n} k * mu(k) * floor(n/k), where mu(k) is the Moebius function. - _Daniel Suteu_, Jun 11 2018
%p A275205 a_list := len -> ListTools:-PartialSums([seq(mul(1-i, i=numtheory:-factorset(k)), k=1..len)]): a_list(49); # _Peter Luschny_, Jul 20 2016
%t A275205 Clear[a, n, d]; a[n_] := If[n < 1, 0, Sum[d MoebiusMu@d, {d, Divisors[n]}]]; Accumulate[Table[a[n], {n, 1, 49}]] (* After Michael Somos in A023900 *)
%t A275205 Clear[jj];
%t A275205 jj = 49;
%t A275205 Table[
%t A275205 Clear[nn, A, B, AB, n, k];
%t A275205 nn = 2*ii;
%t A275205 A = Table[
%t A275205    Table[If[Mod[n, k] == 0, Sqrt[k], 0], {k, 1, nn}], {n, 1, nn}];
%t A275205 B = Table[
%t A275205    Table[If[Mod[k, n] == 0, MoebiusMu[n]*Sqrt[n], 0], {k, 1, nn}], {n,
%t A275205      1, nn}]; MatrixForm[AB = A.B];
%t A275205 a = Table[Table[AB[[n, k]], {k, 1, nn/2}], {n, 1, nn/2}];
%t A275205 d = Table[Table[AB[[n, k]], {k, nn/2 + 1, nn}], {n, nn/2 + 1, nn}];
%t A275205 1 - Total[Total[a + d]], {ii, 1, jj}]
%Y A275205 Cf. A023900, A191898.
%K A275205 sign
%O A275205 1,3
%A A275205 _Mats Granvik_, Jul 19 2016