cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A275228 T(n,k)=Number of nXk 0..2 arrays with no element equal to any value at offset (-2,-1) (-2,1) or (-1,0) and new values introduced in order 0..2.

Original entry on oeis.org

1, 2, 1, 5, 6, 2, 14, 36, 11, 4, 41, 216, 61, 27, 8, 122, 1296, 339, 187, 66, 16, 365, 7776, 1885, 1302, 648, 162, 32, 1094, 46656, 10483, 9075, 6448, 2282, 404, 64, 3281, 279936, 58301, 63267, 64248, 32388, 8134, 1007, 128, 9842, 1679616, 324243, 441090, 640250
Offset: 1

Views

Author

R. H. Hardin, Jul 20 2016

Keywords

Comments

Table starts
...1....2......5.......14.........41.........122...........365............1094
...1....6.....36......216.......1296........7776.........46656..........279936
...2...11.....61......339.......1885.......10483.........58301..........324243
...4...27....187.....1302.......9075.......63267........441090.........3075255
...8...66....648.....6448......64248......640250.......6380362........63583084
..16..162...2282....32388.....460034.....6534900......92831330......1318716132
..32..404...8134...164645....3334854....67550874....1368326231.....27717164160
..64.1007..29027...844176...24595019...716735348...20887845278....608741311725
.128.2512.103456..4319300..181187962..7605814181..319348056936..13409199459965
.256.6271.368889.22083548.1332436071.80496567059.4865299894416.294093896351121

Examples

			Some solutions for n=4 k=4
..0..1..0..1. .0..1..0..1. .0..1..0..1. .0..1..0..2. .0..0..0..0
..2..0..1..0. .1..0..1..0. .1..0..1..2. .1..0..2..0. .1..2..1..2
..0..2..0..2. .2..1..0..1. .2..2..2..1. .2..1..0..2. .2..1..2..1
..2..0..2..0. .1..2..2..0. .1..0..1..0. .1..0..2..0. .0..0..1..0
		

Crossrefs

Column 1 is A000079(n-2).
Row 1 is A007051(n-1).
Row 2 is A000400(n-1).
Row 4 is A078100.

Formula

Empirical for column k:
k=1: a(n) = 2*a(n-1) for n>2
k=2: a(n) = 3*a(n-1) -a(n-2) -2*a(n-4) +a(n-5) for n>6
k=3: [order 9] for n>13
k=4: [order 31] for n>35
k=5: [order 81] for n>86
Empirical for row n:
n=1: a(n) = 4*a(n-1) -3*a(n-2)
n=2: a(n) = 6*a(n-1)
n=3: a(n) = 7*a(n-1) -8*a(n-2)
n=4: a(n) = 9*a(n-1) -15*a(n-2) +6*a(n-3)
n=5: a(n) = 11*a(n-1) -9*a(n-2) -15*a(n-3) +20*a(n-4) -6*a(n-5) for n>6
n=6: a(n) = 19*a(n-1) -75*a(n-2) +101*a(n-3) -44*a(n-4) for n>5
n=7: a(n) = 20*a(n-1) +57*a(n-2) -1206*a(n-3) +3096*a(n-4) +2306*a(n-5) -16957*a(n-6) +20440*a(n-7) -7755*a(n-8) for n>9