A275228 T(n,k)=Number of nXk 0..2 arrays with no element equal to any value at offset (-2,-1) (-2,1) or (-1,0) and new values introduced in order 0..2.
1, 2, 1, 5, 6, 2, 14, 36, 11, 4, 41, 216, 61, 27, 8, 122, 1296, 339, 187, 66, 16, 365, 7776, 1885, 1302, 648, 162, 32, 1094, 46656, 10483, 9075, 6448, 2282, 404, 64, 3281, 279936, 58301, 63267, 64248, 32388, 8134, 1007, 128, 9842, 1679616, 324243, 441090, 640250
Offset: 1
Examples
Some solutions for n=4 k=4 ..0..1..0..1. .0..1..0..1. .0..1..0..1. .0..1..0..2. .0..0..0..0 ..2..0..1..0. .1..0..1..0. .1..0..1..2. .1..0..2..0. .1..2..1..2 ..0..2..0..2. .2..1..0..1. .2..2..2..1. .2..1..0..2. .2..1..2..1 ..2..0..2..0. .1..2..2..0. .1..0..1..0. .1..0..2..0. .0..0..1..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..180
Formula
Empirical for column k:
k=1: a(n) = 2*a(n-1) for n>2
k=2: a(n) = 3*a(n-1) -a(n-2) -2*a(n-4) +a(n-5) for n>6
k=3: [order 9] for n>13
k=4: [order 31] for n>35
k=5: [order 81] for n>86
Empirical for row n:
n=1: a(n) = 4*a(n-1) -3*a(n-2)
n=2: a(n) = 6*a(n-1)
n=3: a(n) = 7*a(n-1) -8*a(n-2)
n=4: a(n) = 9*a(n-1) -15*a(n-2) +6*a(n-3)
n=5: a(n) = 11*a(n-1) -9*a(n-2) -15*a(n-3) +20*a(n-4) -6*a(n-5) for n>6
n=6: a(n) = 19*a(n-1) -75*a(n-2) +101*a(n-3) -44*a(n-4) for n>5
n=7: a(n) = 20*a(n-1) +57*a(n-2) -1206*a(n-3) +3096*a(n-4) +2306*a(n-5) -16957*a(n-6) +20440*a(n-7) -7755*a(n-8) for n>9
Comments