cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A275230 Number of 5 X n 0..2 arrays with no element equal to any value at offset (-2,-1) (-2,1) or (-1,0) and new values introduced in order 0..2.

Original entry on oeis.org

8, 66, 648, 6448, 64248, 640250, 6380362, 63583084, 633633188, 6314431394, 62926066122, 627085726484, 6249183090572, 62275838294858, 620605922265106, 6184609012036812, 61632329405048644, 614193075180580914
Offset: 1

Views

Author

R. H. Hardin, Jul 20 2016

Keywords

Examples

			Some solutions for n=4:
..0..1..2..0. .0..0..1..2. .0..1..0..1. .0..1..0..2. .0..1..2..1
..1..2..1..2. .2..1..0..1. .1..0..1..0. .1..0..1..0. .1..2..1..2
..0..1..2..0. .1..2..1..2. .0..2..0..1. .0..1..0..2. .2..1..0..1
..1..2..0..2. .2..1..2..1. .2..0..1..2. .1..0..1..0. .1..2..1..2
..0..1..2..0. .1..0..1..2. .1..2..0..1. .0..2..0..2. .2..1..2..1
		

Crossrefs

Row 5 of A275228.

Formula

Empirical: a(n) = 11*a(n-1) - 9*a(n-2) - 15*a(n-3) + 20*a(n-4) - 6*a(n-5) for n>6.
Empirical g.f.: 2*x*(4 - 11*x - 3*x^2 + 17*x^3 - 9*x^4 + x^5) / ((1 - x)*(1 - 10*x - x^2 + 14*x^3 - 6*x^4)). - Colin Barker, Feb 02 2019