This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A275238 #7 Jul 22 2016 11:21:50 %S A275238 1,10,23,32,45,54,67,76,89,98,1011,1110,1213,1312,1415,1514,1617,1716, %T A275238 1819,1918,2021,2120,2223,2322,2425,2524,2627,2726,2829,2928,3031, %U A275238 3130,3233,3332,3435,3534,3637,3736,3839,3938,4041,4140,4243,4342,4445,4544,4647,4746,4849,4948,5051,5150,5253,5352,5455,5554 %N A275238 a(n) = n*(10^floor(log_10(n)+1) + 1) + (-1)^n. %C A275238 Concatenation of n with n+(-1)^n (A004442). %C A275238 Subsequence of A248378. %C A275238 Primes in this sequence: 23, 67, 89, 1213, 3637, 4243, 5051, 5657, 6263, 6869, 7879, 8081, 9091, 9293, 9697, 102103, ... (A030458). %C A275238 Numbers n such that a(n) is prime: 2, 6, 8, 12, 36, 42, 50, 56, 62, 68, 78, 80, 90, 92, 96, 102, 108, 120, 126, 138, ... (A030457). %F A275238 a(n) = A020338(n) + A033999(n). %F A275238 a(2k) = A030656(k). %F A275238 A064834(a(n)) > 0, for n > 0. %F A275238 a(n) ~ 10*n*10^floor(c*log(n)), where c = 1/log(10) = 0.4342944819... = A002285. %e A275238 a(0) = 0 + 1 = 1; %e A275238 a(1) = 11 - 1 = 10; %e A275238 a(2) = 22 + 1 = 23; %e A275238 a(3) = 33 - 1 = 32; %e A275238 a(4) = 44 + 1 = 45; %e A275238 a(5) = 55 - 1 = 54, etc. %e A275238 or %e A275238 a(0) = 1 -> concatenation of 0 with 0 + (-1)^0 = 1; %e A275238 a(1) = 10 -> concatenation of 1 with 1 + (-1)^1 = 0; %e A275238 a(2) = 23 -> concatenation of 2 with 2 + (-1)^2 = 3; %e A275238 a(3) = 32 -> concatenation of 3 with 3 + (-1)^3 = 2; %e A275238 a(4) = 45 -> concatenation of 4 with 4 + (-1)^4 = 5; %e A275238 a(5) = 54 -> concatenation of 5 with 5 + (-1)^5 = 4, etc. %e A275238 ........................................................ %e A275238 a(2k) = 1, 23, 45, 67, 89, 1011, 1213, 1415, 1617, 1819, ... %t A275238 Table[n (10^Floor[Log[10, n] + 1] + 1) + (-1)^n, {n, 0, 55}] %o A275238 (PARI) a(n) = if(n, n*(10^(logint(n,10)+1) + 1) + (-1)^n, 1) \\ _Charles R Greathouse IV_, Jul 21 2016 %Y A275238 Cf. A001704, A002285, A004442, A020338, A030457, A030458, A030656, A033999, A064834, A248378. %K A275238 nonn,base,easy %O A275238 0,2 %A A275238 _Ilya Gutkovskiy_, Jul 21 2016