This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A275254 #15 Dec 22 2023 08:39:01 %S A275254 1,3,5,7,9,14,13,15,17,25,21,30,25,36,43,31,33,47,37,57,61,58,45,64, %T A275254 49,69,53,82,57,108,61,63,99,91,113,99,73,102,117,117,81,163,85,132, %U A275254 141,124,93,130,97,135,155,157,105,146,181 %N A275254 The bi-unitary gcd-sum function. %C A275254 Row sums of A165430. %H A275254 Amiram Eldar, <a href="/A275254/b275254.txt">Table of n, a(n) for n = 1..10000</a> %H A275254 László Tóth, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL12/Toth2/toth5.html">On the Bi-Unitary Analogues of Euler's Arithmetical Function and the Gcd-Sum Function</a>, JIS 12 (2009), Article 09.5.2, function P**(n). %F A275254 a(n) = Sum_{k=1..n} A165430(n,k). %F A275254 Sum_{k=1..n} a(k) = c * n^2 * log(n) / 2 + O(n^2), where c = Product_{p prime} (1 - (3*p-1)/(p^2*(p+1))) = zeta(2) * Product_{p prime} (1 - (2*p-1)^2/p^4) = A013661 * A256392 = 0.35823163000196141456... . - _Amiram Eldar_, Dec 22 2023 %p A275254 Pstarstar := proc(n) %p A275254 add(A165430(k,n),k=1..n) ; %p A275254 end proc: %t A275254 phi[x_, n_] := Sum[Boole[GCD[k, n] == 1], {k, 1, x}]; uphi[1]=1; uphi[n_] := Times @@ (-1 + Power @@@ FactorInteger[n]); a[n_] := DivisorSum[n, uphi[#] * phi[n/#, #] &, GCD[#, n/#] == 1 &]; Array[a, 100] (* _Amiram Eldar_, Sep 09 2019 *) %Y A275254 Cf. A013661, A165430, A256392. %K A275254 nonn %O A275254 1,2 %A A275254 _R. J. Mathar_, Jul 21 2016