A275258 Toth's partial sum over the number of divisors of the greatest unitary divisor.
1, 3, 4, 6, 6, 11, 8, 11, 11, 16, 12, 21, 14, 21, 23, 20, 18, 29, 20, 32, 30, 31, 24, 39, 27, 36, 30, 42, 30, 57, 32, 37, 45, 46, 47, 56, 38, 51, 52, 59, 42, 77, 44, 62, 63, 61, 48, 71, 51, 69, 67, 72, 54, 77, 70, 78, 74, 76, 60, 113, 62, 81, 83
Offset: 1
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- László Tóth, On the Bi-Unitary Analogues of Euler's Arithmetical Function and the Gcd-Sum Function, JIS 12 (2009), Article 09.5.2, function S**(n).
Programs
-
Maple
A275258 := proc(n) local a,d ; a := 0 ; for d in A077610(n) do a := a+A005361(d)*A275257(n/d,d) ; end do: a ; end proc: seq(A275258(n),n=1..80) ;
-
Mathematica
beta[n_] := Times @@ Transpose[FactorInteger[n]][[2]]; phi[x_, n_] := Sum[Boole[ GCD[k, n] == 1 ], {k, 1, x}]; a[n_] := DivisorSum[n, beta[#] * phi[n/#, #] &, GCD[#, n/#] == 1 &]; Array[a, 100] (* Amiram Eldar, Sep 22 2019 *)
Formula
Sum_{k=1..n} a(k) = c * n^2 / 2 + O(n * log(n)^2), where c = A065486. - Amiram Eldar, Dec 22 2023