This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A275282 #10 May 27 2018 11:01:53 %S A275282 1,1,2,2,7,9,47,80,492,985,7197,16430,139316,361737,3425683,9939134, %T A275282 103484333,329541459,3747921857,12980700318,159811532315,598410986533, %U A275282 7902918548186,31781977111506,447462660895105,1920559118957107,28699615818386524,130838216971937408 %N A275282 Number of set partitions of [n] with symmetric block size list. %H A275282 Alois P. Heinz, <a href="/A275282/b275282.txt">Table of n, a(n) for n = 0..400</a> %H A275282 Wikipedia, <a href="https://en.wikipedia.org/wiki/Partition_of_a_set">Partition of a set</a> %F A275282 a(n) = Sum_{k=0..n} A275281(n,k). %e A275282 a(3) = 2: 123, 1|2|3. %e A275282 a(4) = 7: 1234, 12|34, 13|24, 14|23, 1|23|4, 1|24|3, 1|2|3|4. %e A275282 a(5) = 9: 12345, 12|3|45, 13|2|45, 1|234|5, 1|235|4, 14|2|35, 1|245|3, 15|2|34, 1|2|3|4|5. %p A275282 b:= proc(n, s) option remember; `if`(n>s, %p A275282 binomial(n-1, n-s-1), 1) +add(binomial(n-1, j-1)* %p A275282 b(n-j, s+j) *binomial(s+j-1, j-1), j=1..(n-s)/2) %p A275282 end: %p A275282 a:= n-> b(n, 0): %p A275282 seq(a(n), n=0..30); %t A275282 b[n_, s_] := b[n, s] = If[n > s, Binomial[n-1, n-s-1], 1] + Sum[Binomial[n - 1, j - 1]*b[n - j, s + j]*Binomial[s + j - 1, j - 1], {j, 1, (n-s)/2}]; %t A275282 a[n_] := b[n, 0]; %t A275282 Table[a[n], {n, 0, 30}] (* _Jean-François Alcover_, May 27 2018, from Maple *) %Y A275282 Row sums of A275281. %K A275282 nonn %O A275282 0,3 %A A275282 _Alois P. Heinz_, Jul 21 2016