A275297 Number of ordered ways to write n as x^2 + y^2 + z^2 + w^3 with x + 2*y a square, where x,y,z,w are nonnegative integers with z >= w.
1, 2, 2, 1, 2, 4, 3, 1, 1, 3, 3, 1, 1, 2, 2, 1, 3, 6, 5, 2, 3, 5, 4, 1, 1, 3, 4, 3, 3, 4, 4, 2, 1, 5, 5, 2, 2, 4, 3, 1, 3, 6, 4, 3, 3, 2, 2, 1, 2, 3, 4, 3, 5, 8, 9, 5, 2, 4, 2, 2, 3, 5, 7, 3, 4, 8, 7, 5, 6, 7, 5, 1, 2, 5, 3, 2, 5, 5, 5, 3, 6
Offset: 0
Keywords
Examples
a(0) = 1 since 0 = 0^2 + 0^2 + 0^2 + 0^3 with 0 + 2*0 = 0^2 and 0 = 0. a(1) = 2 since 1 = 0^2 + 0^2 + 1^2 + 0^3 with 0 + 2*0 = 0^2 and 1 > 0, and also 1 = 1^2 + 0^2 + 0^2 + 0^2 with 1 + 2*0 = 1^2 and 0 = 0. a(3) = 1 since 3 = 1^2 + 0^2 + 1^2 + 1^3 with 1 + 2*0 = 1^2 and 1 = 1. a(7) = 1 since 7 = 2^2 + 1^2 + 1^2 + 1^3 with 2 + 2*1 = 2^2 and 1 = 1. a(8) = 1 since 8 = 0^2 + 2^2 + 2^2 + 0^3 with 0 + 2*2 = 2^2 and 2 > 0. a(11) = 1 since 11 = 1^2 + 0^2 + 3^2 + 1^3 with 1 + 2*0 = 1^2 and 3 > 1. a(12) = 1 since 12 = 0^2 + 0^2 + 2^2 + 2^3 with 0 + 2*0 = 0^2 and 2 = 2. a(15) = 1 since 15 = 2^2 + 1^2 + 3^2 + 1^3 with 2 + 2*1 = 2^2 and 3 > 1. a(23) = 1 since 23 = 3^2 + 3^2 + 2^2 + 1^3 with 3 + 2*3 = 3^2 and 2 > 1. a(24) = 1 since 24 = 0^2 + 0^2 + 4^2 + 2^3 with 0 + 2*0 = 0^2 and 4 > 2. a(32) = 1 since 32 = 4^2 + 0^2 + 4^2 + 0^3 with 4 + 2*0 = 2^2 and 4 > 0. a(39) = 1 since 39 = 5^2 + 2^2 + 3^2 + 1^3 with 5 + 2*2 = 3^2 and 3 > 1. a(47) = 1 since 47 = 0^2 + 2^2 + 4^2 + 3^3 with 0 + 2*2 = 2^2 and 4 > 3. a(71) = 1 since 71 = 6^2 + 5^2 + 3^2 + 1^3 with 6 + 2*5 = 4^2 and 3 > 1. a(103) = 1 since 103 = 2^2 + 7^2 + 7^2 + 1^3 with 2 + 2*7 = 4^2 and 7 > 1. a(120) = 1 since 120 = 5^2 + 2^2 + 8^2 + 3^3 with 5 + 2*2 = 3^2 and 8 > 3. a(136) = 1 since 136 = 0^2 + 8^2 + 8^2 + 2^3 with 0 + 2*8 = 4^2 and 8 > 2. a(159) = 1 since 159 = 10^2 + 3^2 + 7^2 + 1^3 with 10 + 2*3 = 4^2 and 7 > 1. a(176) = 1 since 176 = 2^2 + 1^2 + 12^2 + 3^3 with 2 + 2*1 = 2^2 and 12 > 3. a(183) = 1 since 183 = 6^2 + 5^2 + 11^2 + 1^3 with 6 + 2*5 = 4^2 and 11 > 1. a(218) = 1 since 218 = 5^2 + 2^2 + 8^2 + 5^3 with 5 + 2*2 = 3^2 and 8 > 5. a(359) = 1 since 359 = 11^2 + 7^2 + 8^2 + 5^3 with 11 + 2*7 = 5^2 and 8 > 5. a(463) = 1 since 463 = 2^2 + 17^2 + 13^2 + 1^3 with 2 + 2*17 = 6^2 and 13 > 1.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 0..10000
- Zhi-Wei Sun, Refining Lagrange's four-square theorem, arXiv:1604.06723 [math.GM], 2016.
Programs
-
Mathematica
SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]] CQ[n_]:=CQ[n]=IntegerQ[n^(1/3)] Do[r=0;Do[If[CQ[n-x^2-y^2-z^2]&&SQ[x+2y]&&(n-x^2-y^2-z^2)^(1/3)<=z,r=r+1],{x,0,Sqrt[n]},{y,0,Sqrt[n-x^2]},{z,Floor[(n-x^2-y^2)^(1/3)],Sqrt[n-x^2-y^2]}];Print[n," ",r];Continue,{n,0,80}]
Comments