cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A275298 Number of ordered ways to write n as w^3 + x^2 + y^2 + z^2 with x - w a square, where x,y,z,w are nonnegative integers with y <= z > w.

Original entry on oeis.org

1, 2, 1, 1, 2, 2, 1, 1, 3, 4, 2, 1, 2, 2, 2, 1, 3, 5, 2, 3, 4, 3, 1, 1, 5, 5, 4, 2, 3, 6, 3, 3, 3, 6, 3, 4, 6, 3, 3, 1, 6, 7, 3, 2, 3, 5, 1, 2, 3, 5, 6, 7, 7, 5, 4, 2, 5, 4, 2, 4, 6, 7, 4, 3, 6, 8, 5, 5, 7, 7, 1, 3, 6, 4, 5, 6, 6, 4, 3, 5
Offset: 1

Views

Author

Zhi-Wei Sun, Jul 22 2016

Keywords

Comments

Conjecture: (i) a(n) > 0 for all n > 0, and a(n) = 1 only for n = 1, 3, 4, 7, 8, 12, 16, 23, 24, 40, 47, 71, 167, 311, 599.
(ii) For each triple (a,b,c) = (1,1,1), (2,1,1), (2,1,2), (2,2,2), (3,1,2), any natural number can be written as x^2 + y^2 + z^2 + w^3 with x,y,z,w nonnegative integers such that a*y - b*z - c*w is a square.
See also A275297 and A275299 for similar conjectures.

Examples

			a(1) = 1 since 1 = 0^3 + 0^2 + 0^2 + 1^2 with 0 - 0 = 0^2 and 0 < 1 > 0.
a(3) = 1 since 3 = 0^3 + 1^2 + 1^2 + 1^2 with 1 - 0 = 1^2 and 1 = 1 > 0.
a(4) = 1 since 4 = 0^3 + 0^2 + 0^2 + 2^2 with 0 - 0 = 0^2 and 0 < 2 > 0.
a(7) = 1 since 7 = 1^3 + 1^2 + 1^2 + 2^2 with 1 - 1 = 0^2 and 1 < 2 > 1.
a(8) = 1 since 8 = 0^3 + 0^2 + 2^2 + 2^2 with 0 - 0 = 0^2 and 2 = 2 > 0.
a(12) = 1 since 12 = 1^3 + 1^2 + 1^2 + 3^2 with 1 - 1 = 0^2 and 1 < 3 > 1.
a(16) = 1 since 16 = 0^3 + 0^2 + 0^2 + 4^2 with 0 - 0 = 0^2 and 0 < 4 > 0.
a(23) = 1 since 23 = 1^3 + 2^2 + 3^2 + 3^2 with 2 - 1 = 1^2 and 3 = 3 > 1.
a(24) = 1 since 24 = 0^3 + 4^2 + 2^2 + 2^2 with 4 - 0 = 2^2 and 2 = 2 > 0.
a(40) = 1 since 40 = 0^3 + 0^2 + 2^2 + 6^2 with 0 - 0 = 0^2 and 2 < 6 > 0.
a(47) = 1 since 47 = 1^3 + 1^2 + 3^2 + 6^2 with 1 - 1 = 0^2 and 3 < 6 > 1.
a(71) = 1 since 71 = 1^3 + 5^2 + 3^2 + 6^2 with 5 - 1 = 2^2 and 3 < 6 > 1.
a(167) = 1 since 167 = 1^3 + 2^2 + 9^2 + 9^2 with 2 - 1 = 1^2 and 9 = 9 > 1.
a(311) = 1 since 311 = 1^3 + 2^2 + 9^2 + 15^2 with 2 - 1 = 1^2 and 9 < 15 > 1.
a(599) = 1 since 599 = 5^3 + 5^2 + 7^2 + 20^2 with 5 - 5 = 0^2 and 7 < 20 > 5.
		

Crossrefs

Programs

  • Mathematica
    SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]]
    CQ[n_]:=CQ[n]=IntegerQ[n^(1/3)]
    Do[r=0;Do[If[CQ[n-x^2-y^2-z^2]&&SQ[x-(n-x^2-y^2-z^2)^(1/3)]&&(n-x^2-y^2-z^2)^(1/3)