cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A275299 Number of ordered ways to write n as x^3 + y^2 + z^2 + w^2 with x + y - z a square, where x,y,z,w are nonnegative integers with y <= z.

This page as a plain text file.
%I A275299 #7 Jul 22 2016 20:16:19
%S A275299 1,2,3,3,2,1,3,2,1,4,4,2,3,4,2,2,2,3,7,4,1,2,5,2,1,4,2,5,4,2,3,2,3,4,
%T A275299 6,3,3,8,4,2,2,2,6,4,4,4,4,2,4,5,4,8,3,4,3,3,3,4,7,1,4,4,5,3,4,5,5,8,
%U A275299 3,5,5,1,7,10,3,3,6,5,5,1,5
%N A275299 Number of ordered ways to write n as x^3 + y^2 + z^2 + w^2 with x + y - z a square, where x,y,z,w are nonnegative integers with y <= z.
%C A275299 Conjecture: (i) a(n) > 0 for all n = 0,1,2,..., and a(n) = 1 only for n = 0, 5, 8, 20, 24, 59, 71, 79, 119, 184, 575, 743, 764, 1471, 2759.
%C A275299 (ii) For each triple (a,b,c) = (1,2,1), (3,1,1), (4,2,2), (4,3,3), (5,1,1), (6,2,2), (14,2,2), any natural number can be written as x^3 + y^2 + z^2 + w^2 with x,y,z,w nonnegative integers such that a*x + b*y - c*z is a square.
%C A275299 See also A275297 and A275298 for similar conjectures.
%H A275299 Zhi-Wei Sun, <a href="/A275299/b275299.txt">Table of n, a(n) for n = 0..10000</a>
%H A275299 Zhi-Wei Sun, <a href="http://arxiv.org/abs/1604.06723">Refining Lagrange's four-square theorem</a>, arXiv:1604.06723 [math.GM], 2016.
%e A275299 a(1) = 2 since 1 = 0^3 + 0^2 + 0^2 + 1^2 with 0 + 0 - 0 = 0^2 and 0 = 0, and also 1 = 1^3 + 0^2 + 0^2 + 0^2 with 1 + 0 - 0 = 1^2 and 0 = 0.
%e A275299 a(5) = 1 since 5 = 1^3 + 0^2 + 0^2 + 2^2 with 1 + 0 - 0 = 1^2 and 0 = 0.
%e A275299 a(8) = 1 since 8 = 0^3 + 2^2 + 2^2 + 0^2 with 0 + 2 - 2 = 0^2 and 2 = 2.
%e A275299 a(20) = 1 since 20 = 1^3 + 3^2 + 3^2 + 1^2 with 1 + 3 - 3 = 1^2 and 3 = 3.
%e A275299 a(24) = 1 since 24 = 0^3 + 2^2 + 2^2 + 4^2 with 0 + 2 - 2 = 0^2 and 2 = 2.
%e A275299 a(59) = 1 since 59 = 0^3 + 5^2 + 5^2 + 3^2 with 0 + 5 - 5 = 0^2 and 5 = 5.
%e A275299 a(71) = 1 since 71 = 1^3 + 5^2 + 6^2 + 3^2 with 1 + 5 - 6 = 0^2 and 5 < 6.
%e A275299 a(79) = 1 since 79 = 3^3 + 4^2 + 6^2 + 0^2 with 3 + 4 - 6 = 1^2 and 4 < 6.
%e A275299 a(119) = 1 since 119 = 1^3 + 3^2 + 3^2 + 10^2 with 1 + 3 - 3 = 1^2 and 3 = 3.
%e A275299 a(184) = 1 since 184 = 5^3 + 3^2 + 7^2 + 1^2 with 5 + 3 - 7 = 1^2 and 3 < 7.
%e A275299 a(575) = 1 since 575 = 7^3 + 0^2 + 6^2 + 14^2 with 7 + 0 - 6 = 1^2 and 0 < 6.
%e A275299 a(743) = 1 since 743 = 1^3 + 2^2 + 3^2 + 27^2 with 1 + 2 - 3 = 0^2 and 2 < 3.
%e A275299 a(764) = 1 since 764 = 7^3 + 9^2 + 12^2 + 14^2 with 7 + 9 - 12 = 2^2 and 9 < 12.
%e A275299 a(1471) = 1 since 1471 = 1^3 + 25^2 + 26^2 + 13^2 with 1 + 25 - 26 = 0^2 and 25 < 26.
%e A275299 a(2759) = 1 since 2759 = 5^3 + 8^2 + 13^2 + 49^2 with 5 + 8 - 13 = 0^2 and 8 < 13.
%t A275299 SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]]
%t A275299 Do[r=0;Do[If[SQ[n-x^3-y^2-z^2]&&SQ[x+y-z],r=r+1],{x,0,n^(1/3)},{y,0,Sqrt[(n-x^3)/2]},{z,y,Sqrt[n-x^3-y^2]}];Print[n," ",r];Continue,{n,0,80}]
%Y A275299 Cf. A000290, A000578, A271518, A275297, A275298.
%K A275299 nonn
%O A275299 0,2
%A A275299 _Zhi-Wei Sun_, Jul 22 2016