A275301 Number of ordered ways to write n as x^2 + y^2 + z^2 + 2*w^2 with x + 2*y a cube, where x,y,z,w are nonnegative integers.
1, 2, 2, 2, 2, 1, 1, 1, 1, 3, 2, 1, 2, 2, 1, 1, 3, 4, 4, 5, 3, 2, 5, 2, 4, 5, 2, 3, 4, 3, 1, 3, 4, 4, 5, 3, 3, 5, 6, 3, 4, 3, 2, 4, 3, 4, 4, 3, 3, 7, 3, 4, 5, 3, 6, 4, 4, 4, 3, 3, 2, 3, 2, 2, 8, 3, 4, 8, 4, 3, 8, 3, 4, 9, 3, 4, 3, 4, 1, 3, 4
Offset: 0
Keywords
Examples
a(0) = 1 since 0 = 0^2 + 0^2 + 0^2 + 2*0^2 with 0 + 2*0 = 0^3. a(2) = 2 since 2 = 1^2 + 0^2 + 1^2 + 2*0^2 with 1 + 2*0 =1^3, and 2 = 0^2 + 0^2 + 0^2 + 2*1^2 with 0 + 2*0 = 0^3. a(5) = 1 since 5 = 1^2 + 0^2 + 2^2 + 2*0^2 with 1 + 2*0 = 1^3. a(6) = 1 since 6 = 0^2 + 0^2 + 2^2 + 2*1^2 with 0 + 2*0 = 0^3. a(7) = 1 since 7 = 1^2 + 0^2 + 2^2 + 2*1^2 with 1 + 2*0 = 1^3. a(8) = 1 since 8 = 0^2 + 0^2 + 0^2 + 2*2^2 with 0 + 2*0 = 0^3. a(11) = 1 since 11 = 0^2 + 0^2 + 3^2 + 2*1^2 with 0 + 2*0 = 0^3. a(14) = 1 since 14 = 2^2 + 3^2 + 1^2 + 2*0^2 with 2 + 2*3 = 2^3. a(15) = 1 since 15 = 2^2 + 3^2 + 0^2 + 2*1^2 with 2 + 2*3 = 2^3. a(30) = 1 since 30 = 2^2 + 3^2 + 3^2 + 2*2^2 with 2 + 2*3 = 2^3. a(78) = 1 since 78 = 6^2 + 1^2 + 3^2 + 2*4^2 with 6 + 2*1 = 2^3. a(90) = 1 since 90 = 1^2 + 0^2 + 9^2 + 2*2^2 with 1 + 2*0 = 1^3. a(93) = 1 since 93 = 4^2 + 2^2 + 1^2 + 2*6^2 with 4 + 2*2 = 2^3. a(106) = 1 since 106 = 4^2 + 2^2 + 6^2 + 2*5^2 with 4 + 2*2 = 2^3. a(111) = 1 since 111 = 2^2 + 3^2 + 0^2 + 2*7^2 with 2 + 2*3 = 2^3. a(117) = 1 since 117 = 4^2 + 2^2 + 5^2 + 2*6^2 with 4 + 2*2 = 2^3. a(125) = 1 since 125 = 6^2 + 1^2 + 4^2 + 2*6^2 with 6 + 2*1 = 2^3. a(223) = 1 since 223 = 11^2 + 8^2 + 6^2 + 2*1^2 with 11 + 2*8 = 3^3. a(335) = 1 since 335 = 11^2 + 8^2 + 10^2 + 2*5^2 with 11 + 2*8 = 3^3.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 0..10000
- Zhi-Wei Sun, Refining Lagrange's four-square theorem, arXiv:1604.06723 [math.GM], 2016.
Programs
-
Mathematica
SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]] CQ[n_]:=CQ[n]=IntegerQ[n^(1/3)] Do[r=0;Do[If[SQ[n-2w^2-x^2-y^2]&&CQ[x+2*y],r=r+1],{w,0,(n/2)^(1/2)},{x,0,Sqrt[n-2w^2]},{y,0,Sqrt[n-2w^2-x^2]}];Print[n," ",r];Continue,{n,0,80}]
Comments