cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A275301 Number of ordered ways to write n as x^2 + y^2 + z^2 + 2*w^2 with x + 2*y a cube, where x,y,z,w are nonnegative integers.

Original entry on oeis.org

1, 2, 2, 2, 2, 1, 1, 1, 1, 3, 2, 1, 2, 2, 1, 1, 3, 4, 4, 5, 3, 2, 5, 2, 4, 5, 2, 3, 4, 3, 1, 3, 4, 4, 5, 3, 3, 5, 6, 3, 4, 3, 2, 4, 3, 4, 4, 3, 3, 7, 3, 4, 5, 3, 6, 4, 4, 4, 3, 3, 2, 3, 2, 2, 8, 3, 4, 8, 4, 3, 8, 3, 4, 9, 3, 4, 3, 4, 1, 3, 4
Offset: 0

Views

Author

Zhi-Wei Sun, Jul 22 2016

Keywords

Comments

Conjecture: (i) a(n) > 0 for all n = 0,1,2,..., and a(n) = 1 only for n = 0, 5, 6, 7, 8, 11, 14, 15, 30, 78, 90, 93, 106, 111, 117, 125, 223, 335.
(ii) Any natural number can be written as x^2 + y^2 + z^2 + 2*w^3 with x,y,z,w nonnegative integers such that x + 2*y is a square.
See also A275344 for a similar conjecture.

Examples

			a(0) = 1 since 0 = 0^2 + 0^2 + 0^2 + 2*0^2 with 0 + 2*0 = 0^3.
a(2) = 2 since 2 = 1^2 + 0^2 + 1^2 + 2*0^2 with 1 + 2*0 =1^3, and 2 = 0^2 + 0^2 + 0^2 + 2*1^2 with 0 + 2*0 = 0^3.
a(5) = 1 since 5 = 1^2 + 0^2 + 2^2 + 2*0^2 with 1 + 2*0 = 1^3.
a(6) = 1 since 6 = 0^2 + 0^2 + 2^2 + 2*1^2 with 0 + 2*0 = 0^3.
a(7) = 1 since 7 = 1^2 + 0^2 + 2^2 + 2*1^2 with 1 + 2*0 = 1^3.
a(8) = 1 since 8 = 0^2 + 0^2 + 0^2 + 2*2^2 with 0 + 2*0 = 0^3.
a(11) = 1 since 11 = 0^2 + 0^2 + 3^2 + 2*1^2 with 0 + 2*0 = 0^3.
a(14) = 1 since 14 = 2^2 + 3^2 + 1^2 + 2*0^2 with 2 + 2*3 = 2^3.
a(15) = 1 since 15 = 2^2 + 3^2 + 0^2 + 2*1^2 with 2 + 2*3 = 2^3.
a(30) = 1 since 30 = 2^2 + 3^2 + 3^2 + 2*2^2 with 2 + 2*3 = 2^3.
a(78) = 1 since 78 = 6^2 + 1^2 + 3^2 + 2*4^2 with 6 + 2*1 = 2^3.
a(90) = 1 since 90 = 1^2 + 0^2 + 9^2 + 2*2^2 with 1 + 2*0 = 1^3.
a(93) = 1 since 93 = 4^2 + 2^2 + 1^2 + 2*6^2 with 4 + 2*2 = 2^3.
a(106) = 1 since 106 = 4^2 + 2^2 + 6^2 + 2*5^2 with 4 + 2*2 = 2^3.
a(111) = 1 since 111 = 2^2 + 3^2 + 0^2 + 2*7^2 with 2 + 2*3 = 2^3.
a(117) = 1 since 117 = 4^2 + 2^2 + 5^2 + 2*6^2 with 4 + 2*2 = 2^3.
a(125) = 1 since 125 = 6^2 + 1^2 + 4^2 + 2*6^2 with 6 + 2*1 = 2^3.
a(223) = 1 since 223 = 11^2 + 8^2 + 6^2 + 2*1^2 with 11 + 2*8 = 3^3.
a(335) = 1 since 335 = 11^2 + 8^2 + 10^2 + 2*5^2 with 11 + 2*8 = 3^3.
		

Crossrefs

Programs

  • Mathematica
    SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]]
    CQ[n_]:=CQ[n]=IntegerQ[n^(1/3)]
    Do[r=0;Do[If[SQ[n-2w^2-x^2-y^2]&&CQ[x+2*y],r=r+1],{w,0,(n/2)^(1/2)},{x,0,Sqrt[n-2w^2]},{y,0,Sqrt[n-2w^2-x^2]}];Print[n," ",r];Continue,{n,0,80}]