cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A275315 Average of amicable pairs (x,y), ordered by the smaller value x given in A002025.

This page as a plain text file.
%I A275315 #48 Oct 01 2020 03:24:01
%S A275315 252,1197,2772,5292,6300,10800,13440,17856,69552,66960,69120,78624,
%T A275315 84240,112320,131040,122760,147420,155520,174096,178560,194400,199584,
%U A275315 322812,349272,374976,378000,446400,477603,508896,524160,635040,648000,657720,673920,648000,725760,761400,833280,890568,939600
%N A275315 Average of amicable pairs (x,y), ordered by the smaller value x given in A002025.
%C A275315 Each term represents the midpoint of an interval (x,y), where x (A002025) and y (A002046) form a pair of amicable numbers (A259180).  The length and radius of each interval can be found in A066539 and A162884, respectively.
%C A275315 This sequence is not monotonic (specifically, not nondecreasing), since x+y (A180164) is not monotonic.  For a monotonic (nondecreasing) ordering of these averages, see A275316.
%C A275315 It is unknown if there exists an amicable pair where x and y have opposite parity (one is even and the other is odd).  If such a pair is ever found, then the compound adjective "same-parity" will need to be added to the name of this sequence.
%H A275315 Amiram Eldar, <a href="/A275315/b275315.txt">Table of n, a(n) for n = 1..10000</a> (terms 1..142 from Timothy L. Tiffin)
%H A275315 VaxaSoftware, <a href="http://www.vaxasoftware.com/doc_eduen/mat/numamigos_eng.pdf">List of amicable numbers from 1 to 20,000,000</a> [142 pairs].
%F A275315 a(n) = [A002025(n) + A002046(n)]/2 = A180164(n)/2.
%e A275315 a(  1) = (     220 +      284)/2 =      504/2 =      252.
%e A275315 a(  2) = (    1184 +     1210)/2 =     2394/2 =     1197.
%e A275315 a(  3) = (    2620 +     2924)/2 =     5544/2 =     2772.
%e A275315 ...      ...                 ...          ...         ...
%e A275315 a(  9) = (   63020 +    76084)/2 =   139104/2 =    69552.
%e A275315 a( 10) = (   66928 +    66992)/2 =   133920/2 =    66960.
%e A275315 a( 11) = (   67095 +    71145)/2 =   138240/2 =    69120.
%e A275315 ...      ...                 ...          ...         ...
%e A275315 a( 15) = (  122265 +   139815)/2 =   262080/2 =   131040.
%e A275315 a( 16) = (  122368 +   123152)/2 =   245520/2 =   122760.
%e A275315 a( 17) = (  141664 +   153176)/2 =   294840/2 =   147420.
%e A275315 ...      ...                 ...          ...         ...
%e A275315 a( 32) = (  609928 +   686072)/2 =  1296000/2 =   648000.
%e A275315 ...      ...                 ...          ...         ...
%e A275315 a( 35) = (  643336 +   652664)/2 =  1296000/2 =   648000.
%e A275315 ...      ...                 ...          ...         ...
%e A275315 a(105) = ( 9478910 + 11049730)/2 = 20528640/2 = 10264320.
%e A275315 ...      ...                 ...          ...         ...
%e A275315 a(109) = (10254970 + 10273670)/2 = 20528640/2 = 10264320.
%e A275315 ...      ...                 ...          ...         ...
%e A275315 a(137) = (17754165 + 19985355)/2 = 37739520/2 = 18869760.
%e A275315 a(138) = (17844255 + 19895265)/2 = 37739520/2 = 18869760.
%e A275315 ...      ...                 ...          ...         ...
%Y A275315 Cf. A002025, A002046, A066539, A162884, A180164, A259180, A275316.
%K A275315 nonn
%O A275315 1,1
%A A275315 _Timothy L. Tiffin_, Jul 22 2016