cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A275316 Average of amicable pairs (x,y), ordered by the sum x+y given in A259953.

This page as a plain text file.
%I A275316 #43 Oct 01 2020 03:16:05
%S A275316 252,1197,2772,5292,6300,10800,13440,17856,66960,69120,69552,78624,
%T A275316 84240,112320,122760,131040,147420,155520,174096,178560,194400,199584,
%U A275316 322812,349272,374976,378000,446400,477603,508896,524160,635040,648000,648000,657720,673920,725760,761400,833280,890568,939600
%N A275316 Average of amicable pairs (x,y), ordered by the sum x+y given in A259953.
%C A275316 Each term represents the midpoint of an interval (x,y), where x (A260086) and y (A260087) form a pair of amicable numbers (A259933).  The length and radius of each interval can be found in A275469 and A275470, respectively.
%C A275316 This sequence is monotonic (specifically, nondecreasing), since x+y (A259953) is nondecreasing.  For a nonmonotonic ordering of these averages, see A275315.
%C A275316 It is unknown if there exists an amicable pair where x and y have opposite parity (one is even and the other is odd).  If such a pair is ever found, then the compound adjective "same-parity" will need to be added to the name of this sequence.
%H A275316 Amiram Eldar, <a href="/A275316/b275316.txt">Table of n, a(n) for n = 1..10000</a> (terms 1..142 from Timothy L. Tiffin)
%H A275316 VaxaSoftware, <a href="http://www.vaxasoftware.com/doc_eduen/mat/numamigos_eng.pdf">List of amicable numbers from 1 to 20,000,000</a> [142 pairs].
%F A275316 a(n) = [A260086(n) + A260087(n)]/2 = A259953(n)/2.
%e A275316 a(  1) = (     220 +      284)/2 =      504/2 =      252.
%e A275316 a(  2) = (    1184 +     1210)/2 =     2394/2 =     1197.
%e A275316 a(  3) = (    2620 +     2924)/2 =     5544/2 =     2772.
%e A275316 ...      ...                 ...          ...         ...
%e A275316 a(  9) = (   66928 +    66992)/2 =   133920/2 =    66960.
%e A275316 a( 10) = (   67095 +    71145)/2 =   138240/2 =    69120.
%e A275316 a( 11) = (   63020 +    76084)/2 =   139104/2 =    69552.
%e A275316 ...      ...                 ...          ...         ...
%e A275316 a( 15) = (  122368 +   123152)/2 =   245520/2 =   122760.
%e A275316 a( 16) = (  122265 +   139815)/2 =   262080/2 =   131040.
%e A275316 a( 17) = (  141664 +   153176)/2 =   294840/2 =   147420.
%e A275316 ...      ...                 ...          ...         ...
%e A275316 a( 32) = (  609928 +   686072)/2 =  1296000/2 =   648000.
%e A275316 a( 33) = (  643336 +   652664)/2 =  1296000/2 =   648000.
%e A275316 ...      ...                 ...          ...         ...
%e A275316 a(107) = ( 9478910 + 11049730)/2 = 20528640/2 = 10264320.
%e A275316 a(108) = (10254970 + 10273670)/2 = 20528640/2 = 10264320.
%e A275316 ...      ...                 ...          ...         ...
%e A275316 a(139) = (17754165 + 19985355)/2 = 37739520/2 = 18869760.
%e A275316 a(140) = (17844255 + 19895265)/2 = 37739520/2 = 18869760.
%e A275316 ...      ...                 ...          ...         ...
%t A275316 With[{s = PositionIndex@ Array[DivisorSigma[1, #] &, 10^6]}, Flatten@ Map[Mean, Apply[Join, Map[Function[n, Select[Subsets[Lookup[s, n], {2}], Total@ # == n &]], Sort@ Select[Keys@ s, Length@ Lookup[s, #] > 1 &]]]]] (* _Michael De Vlieger_, Oct 22 2017 *)
%Y A275316 Cf. A260086, A260087, A259180, A259933, A259953, A275315, A275469, A275470.
%K A275316 nonn
%O A275316 1,1
%A A275316 _Timothy L. Tiffin_, Jul 22 2016