This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A275326 #12 Mar 14 2020 10:32:49 %S A275326 1,0,1,0,1,0,3,0,2,1,0,10,5,0,5,4,1,0,35,28,7,0,14,14,6,1,0,126,126, %T A275326 54,9,0,42,48,27,8,1,0,462,528,297,88,11,0,132,165,110,44,10,1,0,1716, %U A275326 2145,1430,572,130,13,0,429,572,429,208,65,12,1 %N A275326 Triangle read by rows, T(n,k) = ceiling(A275325(n,k)/2) for n>=0 and 0<=k<=n. %C A275326 An extension of the Catalan triangle A128899. %H A275326 Peter Luschny, <a href="https://oeis.org/wiki/User:Peter_Luschny/Orbitals">Orbitals</a> %F A275326 T(n,k) = A275325(n,k)/2 for n>=2. %F A275326 T(n,1) = A057977(n) for n>=1 (the extended Catalan numbers). %F A275326 For odd n: T(n,1) = Sum_{k>=0} T(n+1,k). %F A275326 Main diagonal: T(n, floor(n/2)) = A093178(n). %e A275326 Triangle starts: %e A275326 [ n] [k=0,1,2,...] [row sum] %e A275326 [ 0] [1] 1 %e A275326 [ 1] [0, 1] 1 %e A275326 [ 2] [0, 1] 1 %e A275326 [ 3] [0, 3] 3 %e A275326 [ 4] [0, 2, 1] 3 %e A275326 [ 5] [0, 10, 5] 15 %e A275326 [ 6] [0, 5, 4, 1] 10 %e A275326 [ 7] [0, 35, 28, 7] 70 %e A275326 [ 8] [0, 14, 14, 6, 1] 35 %e A275326 [ 9] [0, 126, 126, 54, 9] 315 %e A275326 [10] [0, 42, 48, 27, 8, 1] 126 %e A275326 [11] [0, 462, 528, 297, 88, 11] 1386 %e A275326 [12] [0, 132, 165, 110, 44, 10, 1] 462 %o A275326 (Sage) # uses[orbital_factors] %o A275326 # Function orbital_factors is in A275325. %o A275326 def half_orbital_factors(n): %o A275326 F = orbital_factors(n) %o A275326 return [f//2 for f in F] if n >= 2 else F %o A275326 for n in (0..12): print(half_orbital_factors(n)) %Y A275326 Cf. A057977, A093178, A128899, A275324 (row sums), A275325. %K A275326 nonn,tabf %O A275326 0,7 %A A275326 _Peter Luschny_, Aug 15 2016