This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A275329 #20 Aug 20 2022 08:50:56 %S A275329 2,2,3,9,8,40,25,175,84,756,294,3234,1056,13728,3861,57915,14300, %T A275329 243100,53482,1016158,201552,4232592,764218,17577014,2912168,72804200, %U A275329 11143500,300874500,42791040,1240940160,164812365,5109183315,636438060,21002455980,2463251010 %N A275329 a(n) = (2+[n/2])*n!/((1+[n/2])*[n/2]!^2). %F A275329 a(n) = A056040(n)*(2+[n/2])/(1+[n/2]). %F A275329 a(n) = A057977(n)*A008619(n+2). %F A275329 a(2*n+1) = (n+2)*binomial(2*n+1, n+1) = A189911(2*n+1). %F A275329 a(2*n-3) = n*binomial(2*n-3, n-1) = A097070(n) for n>=2. %F A275329 a(2*n+2) = (n+3)*binomial(2*n+2, n+1)/(n+2) = A038665(n). %F A275329 Sum_{n>=0} 1/a(n) = 16/3 - 40*Pi/(9*sqrt(3)) + 4*Pi^2/9. - _Amiram Eldar_, Aug 20 2022 %p A275329 a := n -> (2+iquo(n,2))*n!/((1+iquo(n,2))*iquo(n, 2)!^2): %p A275329 seq(a(n), n=0..34); %o A275329 (Sage) %o A275329 def A275329(): %o A275329 x, n, k = 1, 1, 2 %o A275329 while True: %o A275329 yield x * k %o A275329 if is_odd(n): %o A275329 x *= n %o A275329 else: %o A275329 k += 1 %o A275329 x = (x<<2)//(n+2) %o A275329 n += 1 %o A275329 a = A275329(); print([next(a) for _ in range(37)]) %Y A275329 Cf. A038665, A056040, A057977, A097070, A189911. %K A275329 nonn %O A275329 0,1 %A A275329 _Peter Luschny_, Sep 10 2016