This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A275330 #12 Feb 26 2020 06:43:15 %S A275330 1,1,3,2,3,7,4,6,7,19,9,12,14,19,46,20,27,28,38,46,129,48,60,63,76,92, %T A275330 129,337,115,144,140,171,184,258,337,939,286,345,336,380,414,516,674, %U A275330 939,2581,719,858,805,912,920,1161,1348,1878,2581,7238 %N A275330 Triangle read by rows, T(n,k) = t(n-k+1)*Sum_{d|k} d*t(d) with t = A000081, for n>=1 and 1<=k<=n. %e A275330 Table starts: %e A275330 [n] [k=1,2,...] row sum %e A275330 [1] [1] 1 %e A275330 [2] [1, 3] 4 %e A275330 [3] [2, 3, 7] 12 %e A275330 [4] [4, 6, 7, 19] 36 %e A275330 [5] [9, 12, 14, 19, 46] 100 %e A275330 [6] [20, 27, 28, 38, 46, 129] 288 %e A275330 [7] [48, 60, 63, 76, 92, 129, 337] 805 %e A275330 [8] [115, 144, 140, 171, 184, 258, 337, 939] 2288 %e A275330 [9] [286, 345, 336, 380, 414, 516, 674, 939, 2581] 6471 %o A275330 (Sage) %o A275330 @cached_function %o A275330 def t(): %o A275330 n = 1 %o A275330 b = [0,1] %o A275330 while True: %o A275330 S = [b[n-k+1]*sum(d*b[d] for d in divisors(k)) for k in (1..n)] %o A275330 b.append(sum(S)//n) %o A275330 yield S %o A275330 n += 1 %o A275330 t_list = t() %o A275330 for n in (1..12): print(next(t_list)) %Y A275330 T(n,0) = A000081(n). %Y A275330 T(n,n) = A209397(n). %Y A275330 Sum_k T(n,k) = A095350(n+1). %Y A275330 Cf. A275331. %K A275330 nonn,tabl %O A275330 1,3 %A A275330 _Peter Luschny_, Aug 18 2016