cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A275333 Triangle read by rows, the break statistic on orbital systems over n sectors.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 2, 1, 1, 2, 1, 1, 3, 3, 6, 6, 6, 3, 3, 1, 1, 2, 3, 3, 3, 3, 2, 1, 1, 4, 4, 8, 12, 16, 16, 20, 16, 16, 12, 8, 4, 4, 1, 1, 2, 3, 5, 5, 7, 7, 8, 7, 7, 5, 5, 3, 2, 1, 1, 5, 5, 10, 15, 25, 30, 40, 45, 55, 55, 60, 55, 55, 45, 40, 30, 25, 15, 10, 5, 5
Offset: 0

Views

Author

Peter Luschny, Jul 23 2016

Keywords

Comments

The definition of an orbital system is given in A232500. The number of orbitals over n sectors is counted by the swinging factorial A056040.
The break index of an orbital is the sum of the positions of the up steps that are immediately followed by a step which is not an up step. This statistic is an extension of the major index statistic given in A063746 which appears as the even numbered rows here. This reflects the fact that the swinging factorial can be seen as an extension of the central binomial. The break index is different from the major index of the swinging factorial (which is in A274888).

Examples

			The length of row n is floor(n^2/4 + 1). Triangle starts:
[n] [k=0,1,2,...] [row sum]
[0] [1] 1
[1] [1] 1
[2] [1, 1] 2
[3] [2, 2, 2] 6
[4] [1, 1, 2, 1, 1] 6
[5] [3, 3, 6, 6, 6, 3, 3] 30
[6] [1, 1, 2, 3, 3, 3, 3, 2, 1, 1] 20
[7] [4, 4, 8, 12, 16, 16, 20, 16, 16, 12, 8, 4, 4] 140
[8] [1, 1, 2, 3, 5, 5, 7, 7, 8, 7, 7, 5, 5, 3, 2, 1, 1] 70
[9] [5, 5, 10, 15, 25, 30, 40, 45, 55, 55, 60, 55, 55, 45, 40, 30,25,15,10,5,5] 630
T(5, 5) = 3 because the three orbitals [1, -1, -1, 1, 0], [1, -1, 0, 1, -1] and [1, 0, -1, 1, -1] have at position 1 and position 4 an up-step which is immediately followed by a step which is not an up-step.
		

Crossrefs

Cf. A056040 (row sum), A063746 (sub triangle), A274888 (q-swinging factorial).
Other orbital statistics: A241477 (first zero crossing), A274706 (absolute integral), A274708 (peaks), A274709 (max. height), A274710 (number of turns), A274878 (span), A274879 (returns), A274880 (restarts), A274881 (ascent).

Programs

  • Sage
    # uses[unit_orbitals from A274709]
    # Brute force counting
    def orbital_break_index(n):
        S = [0]*(n^2//4 + 1)
        for u in unit_orbitals(n):
            L = [i+1 if u[i] == 1 and u[i+1] != 1 else 0 for i in (0..n-2)]
            #    i+1 because u is 0-based
            S[sum(L)] += 1
        return S
    for n in (0..9): print(orbital_break_index(n))