cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A275344 Number of ordered ways to write n as x^2 + y^2 + z^2 + 2*w^2 with x + 2*y + 3*z a square, where x,y,z,w are nonnegative integers.

Original entry on oeis.org

1, 1, 2, 1, 2, 1, 2, 1, 2, 3, 2, 2, 2, 2, 1, 1, 1, 3, 5, 3, 4, 3, 3, 2, 4, 1, 4, 3, 3, 4, 1, 4, 3, 1, 4, 3, 3, 8, 3, 2, 3, 2, 3, 2, 3, 3, 3, 4, 2, 2, 9, 3, 8, 7, 5, 5, 4, 2, 6, 4, 4, 9, 4, 4, 5, 4, 3, 8, 6, 5, 6, 5, 5, 5, 4, 2, 5, 5, 4, 6, 4
Offset: 0

Views

Author

Zhi-Wei Sun, Jul 24 2016

Keywords

Comments

Conjecture: (i) a(n) > 0 for all n = 0,1,2,..., and a(n) = 1 only for n = 0, 1, 3, 5, 7, 14, 15, 16, 25, 30, 33, 84, 169, 225.
(ii) For each ordered pair (a,b) = (1,2), (1,3), (1,12), (1,23), (2,3), (2,4), (2,6), (2,7), (2,15), (2,16), any natural number can be written as x^2 + y^2 + z^2 + 2*w^2 with x,y,z,w nonnegative integers such that a*x + b*y is a square.
This is similar to the conjecture in A271518. It is known that any natural number can be written as x^2 + y^2 + z^2 + 2*w^2 with x,y,z,w nonnegative integers.

Examples

			a(0) = 1 since 0 = 0^2 + 0^2 + 0^2 + 2*0^2 with 0 + 2*0 + 3*0 = 0^2.
a(1) = 1 since 1 = 1^2 + 0^2 + 0^2 + 2*0^2 with 1 + 2*0 + 3*0 = 1^2.
a(3) = 1 since 3 = 1^2 + 0^2 + 0^2 + 2*1^2 with 1 + 2*0 + 3*0 = 1^2.
a(5) = 1 since 5 = 2^2 + 1^2 + 0^2 + 2*0^2 with 2 + 2*1 + 3*0 = 2^2.
a(7) = 1 since 7 = 2^2 + 1^2 + 0^2 + 2*1^2 with 2 + 2*1 + 3*0 = 2^2.
a(14) = 1 since 14 = 1^2 + 1^2 + 2^2 + 2*2^2 with 1 + 2*1 + 3*2 = 3^2.
a(15) = 1 since 15 = 3^2 + 0^2 + 2^2 + 2*1^2 with 3 + 2*0 + 3*2 = 3^2.
a(16) = 1 since 16 = 4^2 + 0^2 + 0^2 + 2*0^2 with 4 + 2*0 + 3*0 = 2^2.
a(25) = 1 since 25 = 1^2 + 4^2 + 0^2 + 2*2^2 with 1 + 2*4 + 3*0 = 3^2.
a(30) = 1 since 30 = 3^2 + 2^2 + 3^2 + 2*2^2 with 3 + 2*2 + 3*3 = 4^2.
a(33) = 1 since 33 = 1^2 + 0^2 + 0^2 + 2*4^2 with 1 + 2*0 + 3*0 = 1^2.
a(84) = 1 since 84 = 4^2 + 6^2 + 0^2 + 2*4^2 with 4 + 2*6 + 3*0 = 4^2.
a(169) = 1 since 169 = 10^2 + 6^2 + 1^2 + 2*4^2 with 10 + 2*6 + 3*1 = 5^2.
a(225) = 1 since 225 = 10^2 + 6^2 + 9^2 + 2*2^2 with 10 + 2*6 + 3*9 = 7^2.
		

Crossrefs

Programs

  • Mathematica
    SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]]
    Do[r=0;Do[If[SQ[n-2*w^2-x^2-y^2]&&SQ[x+2*y+3*Sqrt[n-2w^2-x^2-y^2]],r=r+1],{w,0,Sqrt[n/2]},{x,0,Sqrt[n-2*w^2]},{y,0,Sqrt[n-2*w^2-x^2]}];Print[n," ",r];Continue,{n,0,80}]