A275359 Maximum incarceration of numbers in an n X n X n number cubes with full incarceration volumes.
0, 0, 21, 292, 1566, 5664, 16375, 40716, 90552, 184576, 350649, 628500, 1072786, 1756512, 2774811, 4249084, 6331500, 9209856, 13112797, 18315396, 25145094, 33988000, 45295551, 59591532, 77479456, 99650304, 126890625, 160090996, 200254842, 248507616
Offset: 0
Examples
An order 3 number cube contains the numbers 1 to 27. The smallest value 1 is placed in the single central cell. The largest possible 6 numbers 27,26,25,24,23,22 occupy the central cell in each face of the cube. Thus the path of least resistance off the cube is through cell 22. The total incarceration is then 22-1 = 21 units of incarceration. 2 3 4 10 27 11 14 15 16 5 23 6 24 1 25 17 22 18 7 8 9 12 26 13 19 20 21
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Craig Knecht, 7x7x7 number cube with one pond
- Craig Knecht, Examples of lakes in higher order cubes
- Craig Knecht, Maximum incarceration order 4 number cube
- Walter Trump, Three lakes in a 6x6x6 cube
- Wikipedia, Water retention on mathematical surfaces
- Index entries for linear recurrences with constant coefficients, signature (7,-21,35,-35,21,-7,1).
Crossrefs
Programs
-
PARI
concat([0,0], Vec(x^2*(21+145*x-37*x^2+99*x^3+128*x^4+4*x^5)/(1-x)^7 + O(x^50))) \\ Colin Barker, Aug 01 2016
-
PARI
a(n) = (n^3 - 3*n^2 + 27*n - 8)/2 * (n-1)^3 \\ Charles R Greathouse IV, Aug 05 2016
Formula
a(n) = (n^3 - 3*n^2 + 27*n - 8) / 2 * (n-1)^3 for n>0.
From Colin Barker, Jul 31 2016: (Start)
a(n) = (n^6-6*n^5+39*n^4-99*n^3+108*n^2-51*n+8)/2 for n>0.
a(n) = 7*a(n-1)-21*a(n-2)+35*a(n-3)-35*a(n-4)+21*a(n-5)-7*a(n-6)+a(n-7) for n>7.
G.f.: x^2*(21+145*x-37*x^2+99*x^3+128*x^4+4*x^5) / (1-x)^7.
(End)
Extensions
Edited and a(20)-a(29) added by Colin Barker, Aug 01 2016
Comments