This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A275379 #18 Jul 27 2016 10:21:07 %S A275379 1,1,1,2,3,3,3,7,3,5 %N A275379 Number of prime factors (with multiplicity) of generalized Fermat number 6^(2^n) + 1. %F A275379 a(n) = A001222(A078303(n)). - _Felix Fröhlich_, Jul 25 2016 %e A275379 b(n) = 6^(2^n) + 1. %e A275379 Complete Factorizations %e A275379 b(0) = 7 %e A275379 b(1) = 37 %e A275379 b(2) = 1297 %e A275379 b(3) = 17*98801 %e A275379 b(4) = 353*1697*4709377 %e A275379 b(5) = 2753*145601*19854979505843329 %e A275379 b(6) = 4926056449*447183309836853377*28753787197056661026689 %e A275379 b(7) = 257*763649*50307329*3191106049*2339340566463317436161* %e A275379 2983028405608735541756929*18247770097021321924017185281 %e A275379 b(8) = 18433* %e A275379 69615986569139423375849495295909549956813828853888948633601*P137 %e A275379 b(9) = 80897*3360769*12581314681802812884728041373153281* %e A275379 3513902440204553274892072241244613302018049*P311 %t A275379 Table[PrimeOmega[6^(2^n) + 1], {n, 0, 6}] (* _Michael De Vlieger_, Jul 26 2016 *) %o A275379 (PARI) a(n) = bigomega(factor(6^(2^n)+1)) %Y A275379 Cf. A078303, A273947. %K A275379 nonn,hard,more %O A275379 0,4 %A A275379 _Arkadiusz Wesolowski_, Jul 25 2016 %E A275379 a(8) was found in 2001 by Robert Silverman %E A275379 a(9) was found in 2007 by Nestor de Araújo Melo