This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A275381 #17 Jul 27 2016 10:22:32 %S A275381 1,1,2,2,5,4,3,4,5 %N A275381 Number of prime factors (with multiplicity) of generalized Fermat number 10^(2^n) + 1. %F A275381 a(n) = A001222(A080176(n)). - _Felix Fröhlich_, Jul 25 2016 %e A275381 b(n) = 10^(2^n) + 1. %e A275381 Complete Factorizations %e A275381 b(0) = 11 %e A275381 b(1) = 101 %e A275381 b(2) = 73*137 %e A275381 b(3) = 17*5882353 %e A275381 b(4) = 353*449*641*1409*69857 %e A275381 b(5) = 19841*976193*6187457*834427406578561 %e A275381 b(6) = 1265011073* %e A275381 15343168188889137818369*515217525265213267447869906815873 %e A275381 b(7) = 257*15361*453377*P116 %e A275381 b(8) = 10753*8253953*9524994049*73171503617*P225 %t A275381 Table[PrimeOmega[10^(2^n) + 1], {n, 0, 6}] (* _Michael De Vlieger_, Jul 26 2016 *) %o A275381 (PARI) a(n) = bigomega(factor(10^(2^n)+1)) %Y A275381 Cf. A072982, A080176. %K A275381 nonn,hard,more %O A275381 0,3 %A A275381 _Arkadiusz Wesolowski_, Jul 25 2016