A275388 Convolution of Fibonacci numbers (A000045) and partition numbers (A000041).
0, 1, 2, 5, 10, 20, 37, 68, 120, 210, 360, 612, 1028, 1717, 2846, 4698, 7720, 12649, 20666, 33700, 54856, 89183, 144831, 235016, 381102, 617693, 1000753, 1620882, 2624645, 4249245, 6878455, 11133304, 18018601, 29160254, 47188998, 76361562, 123565443, 199944982
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- Eric Weisstein's World of Mathematics, Fibonacci Number, Partition Function P, q-Pochhammer Symbol.
Programs
-
Mathematica
Table[Sum[Fibonacci[k] PartitionsP[n - k], {k, 1, n}], {n, 0, 30}]
-
PARI
a(n)=sum(k=1, n, fibonacci(k)*numbpart(n - k)); \\ Indranil Ghosh, Jun 29 2017
-
Python
from sympy import fibonacci, npartitions def a(n): return sum([fibonacci(k)*npartitions(n - k) for k in range(1, n + 1)]) print([a(n) for n in range(101)]) # Indranil Ghosh, Jun 29 2017
Formula
G.f.: x/((1 - x - x^2) * (x; x)_inf), where (x; x)_inf is the q-Pochhammer symbol.
a(n+1) - a(n) - a(n-1) = A000041(n).
a(n) ~ phi^n / (sqrt(5) * QPochhammer(1/phi)), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Sep 27 2016