cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A275388 Convolution of Fibonacci numbers (A000045) and partition numbers (A000041).

Original entry on oeis.org

0, 1, 2, 5, 10, 20, 37, 68, 120, 210, 360, 612, 1028, 1717, 2846, 4698, 7720, 12649, 20666, 33700, 54856, 89183, 144831, 235016, 381102, 617693, 1000753, 1620882, 2624645, 4249245, 6878455, 11133304, 18018601, 29160254, 47188998, 76361562, 123565443, 199944982
Offset: 0

Views

Author

Vladimir Reshetnikov, Sep 26 2016

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[Fibonacci[k] PartitionsP[n - k], {k, 1, n}], {n, 0, 30}]
  • PARI
    a(n)=sum(k=1, n, fibonacci(k)*numbpart(n - k)); \\ Indranil Ghosh, Jun 29 2017
    
  • Python
    from sympy import fibonacci, npartitions
    def a(n): return sum([fibonacci(k)*npartitions(n - k) for k in range(1, n + 1)])
    print([a(n) for n in range(101)]) # Indranil Ghosh, Jun 29 2017

Formula

a(n) = Sum_{k=1..n} A000045(k)*A000041(n-k).
G.f.: x/((1 - x - x^2) * (x; x)_inf), where (x; x)_inf is the q-Pochhammer symbol.
a(n+1) - a(n) - a(n-1) = A000041(n).
a(n) ~ phi^n / (sqrt(5) * QPochhammer(1/phi)), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Sep 27 2016