A275401 T(n,k)=Number of nXk 0..2 arrays with no element equal to any value at offset (-2,-1) (-2,0) or (-1,1) and new values introduced in order 0..2.
1, 2, 2, 5, 9, 3, 14, 54, 16, 6, 41, 324, 84, 31, 12, 122, 1944, 444, 178, 63, 24, 365, 11664, 2344, 1011, 394, 129, 48, 1094, 69984, 12376, 5758, 2404, 1017, 260, 96, 3281, 419904, 65344, 32771, 14884, 8122, 2645, 534, 192, 9842, 2519424, 345008, 186538, 91849
Offset: 1
Examples
Some solutions for n=4 k=4 ..0..1..1..1. .0..0..1..1. .0..0..0..1. .0..1..1..2. .0..1..0..0 ..2..2..0..1. .2..2..0..0. .1..2..2..0. .0..0..0..0. .0..2..1..1 ..1..2..2..2. .1..2..2..0. .1..1..1..2. .1..2..2..0. .1..2..2..1 ..1..0..1..2. .1..1..1..1. .0..0..0..1. .1..1..1..2. .1..1..0..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..243
Formula
Empirical for column k:
k=1: a(n) = 2*a(n-1) for n>3
k=2: [order 9] for n>10
k=3: [order 24] for n>28
k=4: [order 65] for n>69
Empirical for row n:
n=1: a(n) = 4*a(n-1) -3*a(n-2)
n=2: a(n) = 6*a(n-1) for n>2
n=3: a(n) = 4*a(n-1) +6*a(n-2) +4*a(n-3)
n=4: a(n) = 3*a(n-1) +11*a(n-2) +25*a(n-3) +2*a(n-4) -24*a(n-5) for n>6
n=5: [order 9] for n>10
n=6: [order 16] for n>17
n=7: [order 21] for n>22
Comments