This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A275414 #20 May 19 2018 02:25:11 %S A275414 3,9,6,27,27,10,81,126,54,15,243,486,297,90,21,729,1836,1380,540,135, %T A275414 28,2187,6561,5994,2763,855,189,36,6561,23004,24543,13212,4635,1242, %U A275414 252,45,19683,78732,96723,59130,23490,6996,1701,324,55,59049,265842,368874,253719 %N A275414 Triangle read by rows: T(n,k) is the number of multisets of k ternary words with a total of n letters. %C A275414 Ternary analog of A209406. Multiset transformation of A000244. %H A275414 Alois P. Heinz, <a href="/A275414/b275414.txt">Rows n = 1..141, flattened</a> %H A275414 <a href="/index/Mu#multiplicative_completely">Index entries for triangles generated by the Multiset Transformation</a> %F A275414 T(n,1) = A000244(n). %F A275414 T(n,k) = Sum_{c_i*N_i=n,i=1..k} binomial(T(N_i,1)+c_i-1,c_i) for 1<k<=n. %F A275414 G.f.: Product_{j>=1} (1-y*x^j)^(-3^j). - _Alois P. Heinz_, Apr 13 2017 %e A275414 3 %e A275414 9 6 %e A275414 27 27 10 %e A275414 81 126 54 15 %e A275414 243 486 297 90 21 %e A275414 729 1836 1380 540 135 28 %e A275414 2187 6561 5994 2763 855 189 36 %e A275414 6561 23004 24543 13212 4635 1242 252 45 %e A275414 19683 78732 96723 59130 23490 6996 1701 324 55 %e A275414 59049 265842 368874 253719 111609 36828 9846 2232 405 66 %p A275414 b:= proc(n, i, p) option remember; `if`(p>n, 0, `if`(n=0, 1, %p A275414 `if`(min(i, p)<1, 0, add(b(n-i*j, i-1, p-j)* %p A275414 binomial(3^i+j-1, j), j=0..min(n/i, p))))) %p A275414 end: %p A275414 T:= (n, k)-> b(n$2, k): %p A275414 seq(seq(T(n, k), k=1..n), n=1..14); # _Alois P. Heinz_, Apr 13 2017 %t A275414 b[n_, i_, p_] := b[n, i, p] = If[p > n, 0, If[n == 0, 1, If[Min[i, p] < 1, 0, Sum[b[n - i*j, i-1, p - j]*Binomial[3^i + j - 1, j], {j, 0, Min[n/i, p]}]]]]; %t A275414 T[n_, k_] := b[n, n, k]; %t A275414 Table[T[n, k], {n, 1, 14}, {k, 1, n}] // Flatten (* _Jean-François Alcover_, May 19 2018, after _Alois P. Heinz_ *) %Y A275414 Cf. A144067 (row sums), A000244 (column 1), A027468 (subdiagonal ?). %K A275414 nonn,tabl %O A275414 1,1 %A A275414 _R. J. Mathar_, Jul 27 2016