This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A275421 #24 May 09 2019 09:52:26 %S A275421 1,1,1,3,1,1,5,4,1,1,12,8,4,1,1,30,23,9,4,1,1,79,57,26,9,4,1,1,227, %T A275421 160,68,27,9,4,1,1,710,456,197,71,27,9,4,1,1,2322,1402,567,208,72,27, %U A275421 9,4,1,1,8071,4468,1748,604,211,72,27,9,4,1,1,29503,15071,5555,1874 %N A275421 Triangle read by rows: T(n,k) = number of graphs with n edges and k connected components. %C A275421 Multiset transformation of A002905. %H A275421 Alois P. Heinz, <a href="/A275421/b275421.txt">Rows n = 1..60, flattened</a> %H A275421 Peter Steinbach, <a href="/A000664/a000664_1.pdf">Field Guide to Simple Graphs, Volume 4</a>, Table 1.1a, Part 1 (For Volumes 1, 2, 3, 4 of this book see A000088, A008406, A000055, A000664, respectively.) %H A275421 <a href="/index/Mu#multiplicative_completely">Index entries for triangles generated by the Multiset Transformation</a> %F A275421 T(n,1) = A002905(n). %F A275421 T(n,k) = Sum_{c_i*N_i=n,i=1..k} binomial(T(N_i,1)+c_i-1,c_i) for 1<k<=n. %F A275421 G.f.: Product_{j>=1} (1-y*x^j)^(-A002905(j)). - _Alois P. Heinz_, Apr 13 2017 %e A275421 1 %e A275421 1 1 %e A275421 3 1 1 %e A275421 5 4 1 1 %e A275421 12 8 4 1 1 %e A275421 30 23 9 4 1 1 %e A275421 79 57 26 9 4 1 1 %e A275421 227 160 68 27 9 4 1 1 %e A275421 710 456 197 71 27 9 4 1 1 %e A275421 2322 1402 567 208 72 27 9 4 1 1 %e A275421 8071 4468 1748 604 211 72 27 9 4 1 1 %e A275421 29503 15071 5555 1874 615 212 72 27 9 4 1 %t A275421 rows = 12; %t A275421 A002905 = Import["https://oeis.org/A002905/b002905.txt", "Table"][[All, 2]]; %t A275421 gf = Product[(1 - y x^j)^-A002905[[j+1]], {j, 1, rows}]; %t A275421 Rest[CoefficientList[#, y]]& /@ Rest[CoefficientList[gf + O[x]^(rows+1), x]] // Flatten (* _Jean-François Alcover_, May 09 2019, after _Alois P. Heinz_ *) %Y A275421 Cf. A002905 (column 1), A000664 (row sums). %K A275421 nonn,tabl %O A275421 1,4 %A A275421 _R. J. Mathar_, Jul 27 2016