This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A275422 #13 Feb 08 2017 04:12:30 %S A275422 1,1,1,1,1,2,1,1,1,5,1,1,2,1,15,1,1,1,4,1,52,1,1,2,2,10,1,203,1,1,1,4, %T A275422 5,26,1,877,1,1,2,1,11,11,76,1,4140,1,1,1,5,1,31,31,232,1,21147,1,1,2, %U A275422 1,14,2,106,106,764,1,115975,1,1,1,4,1,46,7,372,337,2620,1,678570 %N A275422 Number A(n,k) of set partitions of [n] such that k is a multiple of each block size; square array A(n,k), n>=0, k>=0, read by antidiagonals. %H A275422 Alois P. Heinz, <a href="/A275422/b275422.txt">Antidiagonals n = 0..200, flattened</a> %H A275422 Wikipedia, <a href="https://en.wikipedia.org/wiki/Partition_of_a_set">Partition of a set</a> %F A275422 E.g.f. for column k>0: exp(Sum_{d|k} x^d/d!), for k=0: exp(exp(x)-1). %e A275422 A(5,3) = 11: 123|4|5, 124|3|5, 125|3|4, 134|2|5, 135|2|4, 1|234|5, 1|235|4, 145|2|3, 1|245|3, 1|2|345, 1|2|3|4|5. %e A275422 A(4,4) = 11: 1234, 12|34, 12|3|4, 13|24, 13|2|4, 14|23, 1|23|4, 14|2|3, 1|24|3, 1|2|34, 1|2|3|4. %e A275422 A(6,5) = 7: 12345|6, 12346|5, 12356|4, 12456|3, 13456|2, 1|23456, 1|2|3|4|5|6. %e A275422 Square array A(n,k) begins: %e A275422 : 1, 1, 1, 1, 1, 1, 1, 1, 1, ... %e A275422 : 1, 1, 1, 1, 1, 1, 1, 1, 1, ... %e A275422 : 2, 1, 2, 1, 2, 1, 2, 1, 2, ... %e A275422 : 5, 1, 4, 2, 4, 1, 5, 1, 4, ... %e A275422 : 15, 1, 10, 5, 11, 1, 14, 1, 11, ... %e A275422 : 52, 1, 26, 11, 31, 2, 46, 1, 31, ... %e A275422 : 203, 1, 76, 31, 106, 7, 167, 1, 106, ... %e A275422 : 877, 1, 232, 106, 372, 22, 659, 2, 372, ... %e A275422 : 4140, 1, 764, 337, 1499, 57, 2836, 9, 1500, ... %p A275422 A:= proc(n, k) option remember; `if`(n=0, 1, add( %p A275422 `if`(j>n, 0, A(n-j, k)*binomial(n-1, j-1)), j= %p A275422 `if`(k=0, 1..n, numtheory[divisors](k)))) %p A275422 end: %p A275422 seq(seq(A(n, d-n), n=0..d), d=0..14); %t A275422 A[n_, k_] := A[n, k] = If[n==0, 1, Sum[If[j>n, 0, A[n-j, k]*Binomial[n-1, j - 1]], {j, If[k==0, Range[n], Divisors[k]]}]]; Table[A[n, d-n], {d, 0, 14}, {n, 0, d}] // Flatten (* _Jean-François Alcover_, Feb 08 2017, translated from Maple *) %Y A275422 Columns k=0-10 give: A000110, A000012, A000085, A190865, A190452, A275423, A275424, A275425, A275426, A275427, A275428. %Y A275422 Main diagonal gives A275429. %K A275422 nonn,tabl %O A275422 0,6 %A A275422 _Alois P. Heinz_, Jul 27 2016