This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A275431 #23 May 18 2018 04:53:54 %S A275431 1,2,1,5,2,1,14,8,2,1,42,24,8,2,1,132,85,28,8,2,1,429,286,100,28,8,2, %T A275431 1,1430,1008,358,105,28,8,2,1,4862,3536,1309,378,105,28,8,2,1,16796, %U A275431 12618,4772,1410,384,105,28,8,2,1,58786,45220,17556,5220,1435,384,105,28,8,2,1 %N A275431 Triangle read by rows: T(n,k) = number of ways to insert n pairs of parentheses in k words. %C A275431 Multiset transformation of A000108. Each word is dissected by a number of parentheses associated to its length. %C A275431 Also the number of forests of exactly k (unlabeled) ordered rooted trees with a total of n non-root nodes where each tree has at least 1 non-root node. - _Alois P. Heinz_, Sep 20 2017 %H A275431 Alois P. Heinz, <a href="/A275431/b275431.txt">Rows n = 1..141, flattened</a> %H A275431 <a href="/index/Mu#multiplicative_completely">Index entries for triangles generated by the Multiset Transformation</a> %F A275431 T(n,1) = A000108(n). %F A275431 T(n,k) = Sum_{c_i*N_i=n,i=1..k} binomial(T(N_i,1)+c_i-1,c_i) for 1<k<=n. %F A275431 G.f.: Product_{j>=1} 1/(1-y*x^j)^A000108(j). - _Alois P. Heinz_, Apr 13 2017 %e A275431 1 %e A275431 2 1 %e A275431 5 2 1 %e A275431 14 8 2 1 %e A275431 42 24 8 2 1 %e A275431 132 85 28 8 2 1 %e A275431 429 286 100 28 8 2 1 %e A275431 1430 1008 358 105 28 8 2 1 %e A275431 4862 3536 1309 378 105 28 8 2 1 %e A275431 16796 12618 4772 1410 384 105 28 8 2 1 %e A275431 58786 45220 17556 5220 1435 384 105 28 8 2 1 %p A275431 C:= proc(n) option remember; binomial(2*n, n)/(n+1) end: %p A275431 b:= proc(n, i, p) option remember; `if`(p>n, 0, `if`(n=0, 1, %p A275431 `if`(min(i, p)<1, 0, add(b(n-i*j, i-1, p-j)* %p A275431 binomial(C(i)+j-1, j), j=0..min(n/i, p))))) %p A275431 end: %p A275431 T:= (n, k)-> b(n$2, k): %p A275431 seq(seq(T(n, k), k=1..n), n=1..12); # _Alois P. Heinz_, Apr 13 2017 %t A275431 c[n_] := c[n] = Binomial[2*n, n]/(n + 1); %t A275431 b[n_, i_, p_] := b[n, i, p] = If[p > n, 0, If[n == 0, 1, If[Min[i, p] < 1, 0, Sum[b[n - i*j, i - 1, p - j]*Binomial[c[i] + j - 1, j], {j, 0, Min[n/i, p]}]]]]; %t A275431 T[n_, k_] := b[n, n, k]; %t A275431 Table[T[n, k], {n, 1, 12}, {k, 1, n}] // Flatten (* _Jean-François Alcover_, May 18 2018, after _Alois P. Heinz_ *) %Y A275431 Cf. A000108 (1st column), A007223 (2nd column), A056711 (3rd column), A088327 (row sums). %Y A275431 T(2n,n) gives A292668. %K A275431 nonn,tabl %O A275431 1,2 %A A275431 _R. J. Mathar_, Jul 27 2016