cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A275434 Sum of the degrees of asymmetry of all compositions of n.

This page as a plain text file.
%I A275434 #21 Apr 11 2025 06:58:32
%S A275434 0,0,0,2,4,12,28,68,156,356,796,1764,3868,8420,18204,39140,83740,
%T A275434 178404,378652,800996,1689372,3553508,7456540,15612132,32622364,
%U A275434 68040932,141674268,294533348,611436316,1267611876,2624702236,5428361444,11214636828
%N A275434 Sum of the degrees of asymmetry of all compositions of n.
%C A275434 The degree of asymmetry of a finite sequence of numbers is defined to be the number of pairs of symmetrically positioned distinct entries. Example: the degree of asymmetry of (2,7,6,4,5,7,3) is 2, counting the pairs (2,3) and (6,5).
%C A275434 A sequence is palindromic if and only if its degree of asymmetry is 0.
%H A275434 V. E. Hoggatt, Jr., and Marjorie Bicknell, <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Scanned/13-4/hoggatt1.pdf">Palindromic compositions</a>, Fibonacci Quart., Vol. 13(4), 1975, pp. 350-356.
%H A275434 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3,0,-4).
%F A275434 G.f.: g(z) = 2*z^3*(1-z)/((1-2*z)*(1-z-2*z^2)). In the more general situation of compositions into a[1]<a[2]<a[3]<..., denoting F(z) = Sum_{j>=1} z^(a[j]), we have g(z) = (F(z)^2 - F(z^2))/((1+F(z))*(1-F(z))^2).
%F A275434 a(n) = -(4/9)*(-1)^n + (3*n - 2)*2^n/36 for n>=2; a(0) = a(1) = 0.
%F A275434 a(n) = Sum_{k>=0} k*A275433(n,k).
%F A275434 a(n) = 2*A059570(n-2) for n>=3. - _Alois P. Heinz_, Jul 29 2016
%e A275434 a(4) = 4 because the compositions 4, 13, 22, 31, 112, 121, 211, 1111 have degrees of asymmetry 0, 1, 0, 1, 1, 0, 1, 0, respectively.
%p A275434 g := 2*z^3*(1-z)/((1-2*z)*(1-z-2*z^2)): gser := series(g, z = 0, 35): seq(coeff(gser, z, n), n = 0 .. 32);
%p A275434 a := proc(n) if n = 0 then 0 elif n = 1 then 0 else -(4/9)*(-1)^n+(1/36)*(3*n-2)*2^n end if end proc: seq(a(n), n = 0 .. 32);
%t A275434 b[n_, i_] := b[n, i] = Expand[If[n==0, 1, Sum[b[n - j, If[i==0, j, 0]] If[i > 0 && i != j, x, 1], {j, 1, n}]]];
%t A275434 a[n_] := Function[p, Sum[i Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][ b[n, 0]];
%t A275434 a /@ Range[0, 32] (* _Jean-François Alcover_, Nov 24 2020, after _Alois P. Heinz_ in A275433 *)
%Y A275434 Cf. A059570, A275433.
%K A275434 nonn,easy
%O A275434 0,4
%A A275434 _Emeric Deutsch_, Jul 29 2016