This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A275435 #8 Aug 16 2016 04:20:46 %S A275435 1,2,1,2,3,2,2,4,2,5,6,2,3,8,8,2,8,14,10,2,5,16,20,12,2,13,30,30,14,2, %T A275435 8,30,48,40,16,2,21,60,78,54,18,2,13,56,106,112,68,20,2,34,116,184, %U A275435 166,86,22,2,21,102,224,286,224,104,24,2,55,218,408,452,310,126,26,2 %N A275435 Triangle read by rows: T(n,k) is the number of 00-avoiding binary words of length n having degree of asymmetry equal to k (n>=0; 0<=k<=floor(n/2)). %C A275435 The degree of asymmetry of a finite sequence of numbers is defined to be the number of pairs of symmetrically positioned distinct entries. Example: the degree of asymmetry of (2,7,6,4,5,7,3) is 2, counting the pairs (2,3) and (6,5). %C A275435 A sequence is palindromic if and only if its degree of asymmetry is 0. %C A275435 Number of entries in row n is 1+floor(n/2). %C A275435 Sum of entries in row n is A000045(n+2) (Fibonacci). %C A275435 T(n,0) = A053602(n+2) (= number of palindromic 00-avoiding binary words of length n). %C A275435 Sum(k*T(n,k), k>=0) = A275436(n). %F A275435 G.f.: G(t,z) = (1 + 2z + tz^2 +z^3 -tz^5)/(1 - z^2 - tz^2 - z^4 - tz^4 + tz^6). %e A275435 Row 3 is [3,2] because the 00-avoiding binary words of length 3 are 010, 011, 101, 110, 111, having asymmetry degrees 0, 1, 0, 1, 0, respectively. %e A275435 Triangle starts: %e A275435 1; %e A275435 2; %e A275435 1,2; %e A275435 3,2; %e A275435 2,4,2; %e A275435 5,6,2. %p A275435 G := (1+2*z+t*z^2+z^3-t*z^5)/(1-z^2-t*z^2-z^4-t*z^4+t*z^6): Gser := simplify(series(G, z = 0, 20)): for n from 0 to 18 do P[n] := sort(coeff(Gser, z, n)) end do: for n from 0 to 18 do seq(coeff(P[n], t, j), j = 0 .. (1/2)*n) end do; # yields sequence in triangular form %t A275435 Table[BinCounts[#, {0, Floor[n/2] + 1, 1}] &@ Map[Total@ BitXor[Take[#, Ceiling[Length[#]/2]], Reverse@ Take[#, -Ceiling[Length[#]/2]]] &, Select[PadLeft[IntegerDigits[#, 2], n] & /@ Range[0, 2^n - 1], Length@ SequenceCases[#, {0, 0}] == 0 &]], {n, 0, 15}] // Flatten (* _Michael De Vlieger_, Aug 15 2016, Version 10.1 *) %Y A275435 Cf. A000045, A053602, A275436 %K A275435 nonn,tabf %O A275435 0,2 %A A275435 _Emeric Deutsch_, Aug 15 2016