cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A275436 Sum of the asymmetry degrees of all 00-avoiding binary words of length n.

Original entry on oeis.org

0, 0, 2, 2, 8, 10, 30, 40, 100, 140, 320, 460, 988, 1448, 2982, 4430, 8840, 13270, 25850, 39120, 74760, 113880, 214272, 328152, 609528, 937680, 1722890, 2660570, 4843400, 7503970, 13551510, 21055480, 37759468, 58814948, 104827712, 163642660, 290077780
Offset: 0

Views

Author

Emeric Deutsch, Aug 15 2016

Keywords

Comments

The asymmetry degree of a finite sequence of numbers is defined to be the number of pairs of symmetrically positioned distinct entries. Example: the asymmetry degree of (2,7,6,4,5,7,3) is 2, counting the pairs (2,3) and (6,5).
A sequence is palindromic if and only if its asymmetry degree is 0.

Examples

			a(4) = 8 because the 00-avoiding binary words of length 4 are 0101, 0110, 0111, 1010, 1011, 1101, 1110, 1111 and the sum of their asymmetry degrees is 2 + 0 + 1 + 2 + 1 + 1 + 1 + 0 = 8.
		

Crossrefs

Programs

  • Maple
    g := 2*z^2/((1+z^2)*(1+z-z^2)*(1-z-z^2)^2): gser:= series(g,z = 0,43): seq(coeff(gser, z, n), n = 0 .. 40);
  • Mathematica
    Table[Total@ Map[Total@ BitXor[Take[#, Ceiling[Length[#]/2]], Reverse@ Take[#, -Ceiling[Length[#]/2]]] &, Select[PadLeft[IntegerDigits[#, 2], n] & /@ Range[0, 2^n - 1], Length@ SequenceCases[#, {0, 0}] == 0 &]], {n, 0, 18}] (* Michael De Vlieger, Aug 15 2016, Version 10.1 *)
  • PARI
    concat(vector(2), Vec(2*x^2/((1+x^2)*(1+x-x^2)*(1-x-x^2)^2) + O(x^50))) \\ Colin Barker, Aug 29 2016

Formula

G.f.: g(z) = 2z^2/((1+z^2)(1+z-z^2)(1-z-z^2)^2).
a(n) = Sum_{k>=0} k * A275435(n,k).
a(n) = ((10*n + 11 + 5*(-1)^n)*F(n) + (10*n - 7 + 15*(-1)^n)*F(n+1) - 4*(sin(n*Pi/2) + 2*cos(n*Pi/2)))/50, where F(n) = A000045(n) (the Fibonacci numbers). - Emeric Deutsch, Mar 14 2018
a(n) = a(n-1)+3*a(n-2)-2*a(n-3)-2*a(n-5)-3*a(n-6)+a(n-7)+a(n-8). - Maxim Karimov, Aug 23 2020
Showing 1-1 of 1 results.