cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A275437 Triangle read by rows: T(n,k) is the number of 01-avoiding binary words of length n having degree of asymmetry equal to k (n >= 0; 0 <= k <= floor(n/2)).

Original entry on oeis.org

1, 2, 2, 1, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1
Offset: 0

Views

Author

Emeric Deutsch, Aug 15 2016

Keywords

Comments

The degree of asymmetry of a finite sequence of numbers is defined to be the number of pairs of symmetrically positioned distinct entries. Example: the degree of asymmetry of (2,7,6,4,5,7,3) is 2, counting the pairs (2,3) and (6,5).
A sequence is palindromic if and only if its degree of asymmetry is 0.
Number of entries in row n is 1 + floor(n/2).
Sum of entries in row n is n+1.
Sum(k*T(n,k), k>=0) = A002620(n).

Examples

			Row 4 is [2,2,1] because the 01-avoiding binary words of length 4 are 0000, 1000, 1100, 1110, and 1111, having asymmetry degrees 0, 1, 2, 1, and 0, respectively.
Triangle starts:
  1;
  2;
  2, 1;
  2, 2;
  2, 2, 1;
  2, 2, 2.
		

Crossrefs

Programs

  • Maple
    T:= proc(n,k) if n = 2*k then 1 elif k <= floor((1/2)*n) then 2 else 0 end if end proc: for n from 0 to 20 do seq(T(n,j),j=0..floor((1/2)*n)) end do; # yields sequence in triangular form
  • Mathematica
    Table[BinCounts[#, {0, Floor[n/2] + 1, 1}] &@ Map[Total@ BitXor[Take[#, Ceiling[Length[#]/2]], Reverse@ Take[#, -Ceiling[Length[#]/2]]] &, Select[PadLeft[IntegerDigits[#, 2], n] & /@ Range[0, 2^n - 1], Length@ SequenceCases[#, {0, 1}] == 0 &]], {n, 0, 15}] // Flatten (* Michael De Vlieger, Aug 15 2016, Version 10.1 *)
    Table[If[k == n/2, 1, 2], {n, 15}, {k, Floor[n/2]}] (* Michael De Vlieger, Nov 05 2017 *)

Formula

T(2k,k)=1 (k >= 0); T(n,k)=2 if k <= floor(n/2); T(n,k)=0 if k > floor(n/2).
G.f.: G(t,z) = (1 + z)/((1 - z)(1 - tz^2)).