cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A275448 The number of weakly alternating bargraphs of semiperimeter n. A bargraph is said to be weakly alternating if its ascents and descents alternate. An ascent (descent) is a maximal sequence of consecutive U (D) steps.

Original entry on oeis.org

1, 2, 3, 4, 6, 12, 28, 65, 146, 327, 749, 1756, 4165, 9913, 23652, 56687, 136627, 330969, 804915, 1963830, 4805523, 11793046, 29019930, 71589861, 177006752, 438561959, 1088714711, 2707615555, 6745272783, 16830750107, 42058592797, 105248042792
Offset: 2

Views

Author

Keywords

Examples

			a(4)=3 because the 5 (=A082582(4)) bargraphs of semiperimeter 4 correspond to the compositions [1,1,1],[1,2],[2,1],[2,2],[3] and the corresponding drawings show that only [1,1,1],[2,2], and [3] lead to weakly alternating bargraphs.
		

Crossrefs

Programs

  • Maple
    g := ((1-3*z+3*z^2-sqrt((1-3*z+z^2)*(1-3*z+5*z^2-4*z^3)))*(1/2))/(z*(1-z)): gser:= series(g,z=0,43): seq(coeff(gser,z,n), n=2..40);
  • Mathematica
    terms = 32;
    g[z_] = ((1 - 3z + 3z^2 - Sqrt[(1 - 3z + z^2)(1 - 3z + 5z^2 - 4z^3)])*(1/2) )/(z(1-z));
    Drop[CoefficientList[g[z] + O[z]^(terms+2), z], 2] (* Jean-François Alcover, Aug 07 2018 *)

Formula

G.f.: g(z) = (1-3z+3z^2 - Q)/(2z(1-z)), where Q = sqrt((1-3z+z^2)(1-3z+5z^2-4z^3)).
D-finite with recurrence (n+1)*a(n) +(-7*n+2)*a(n-1) +3*(7*n-11)*a(n-2) +(-37*n+107)*a(n-3) +3*(13*n-54)*a(n-4) +3*(-7*n+37)*a(n-5) +2*(2*n-13)*a(n-6)=0. - R. J. Mathar, Jul 22 2022