cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A275449 Least odd primitive abundant number with n prime factors, counted with multiplicity.

Original entry on oeis.org

945, 7425, 81081, 78975, 1468935, 6375105, 85930875, 307879299, 1519691625, 8853249375, 17062700625, 535868474337, 2241870572475, 12759034818375, 64260996890625, 866566808687853, 2964430488515625, 23849823423763953, 100139192108634825, 772934641006640625, 2696807941801171875
Offset: 5

Views

Author

M. F. Hasler, Jul 27 2016

Keywords

Comments

See A188342 = (945, 3465, 15015, 692835, 22309287, ...) for the least odd primitive abundant number (A006038) with n distinct prime factors.
At least up to a(11), the greatest prime factor gpf(a(n)) = Q(a(n)/gpf(a(n))), where Q(N) = floor(sigma(N)/(2N-sigma(N))). In general one has to apply the precprime() function A007917 to this integer.
The above holds also for a(12)-a(15). Lars Blomberg, Apr 09 2018

Examples

			We have:   a(5) = 945 = 3^3 * 5   * 7,
          a(6) = 7425 = 3^3 * 5^2 * 11,
         a(7) = 81081 = 3^4 *  7  * 11 * 13,
        a(8) =  78975 = 3^5 * 5^2 * 13,
       a(9) = 1468935 = 3^6 * 5   * 13 * 31,
      a(10) = 6375105 = 3^7 * 5   * 11 * 53,
     a(11) = 85930875 = 3^6 * 5^3 * 23 * 41,
    a(12) = 307879299 = 3^7 * 7^2 * 13^2 * 17,
   a(13) = 1519691625 = 3^8 * 5^3 * 17 * 109,
   a(14) = 8853249375 = 3^8 * 5^4 * 17 * 127,
  a(15) = 17062700625 = 3^9 * 5^4 * 19 * 73.
		

Crossrefs

Programs

  • PARI
    a(n)=for(i=1,#A=A006038,bigomega(A[i])==n&&return(A[i])) \\ Provided that A006038 is defined as a set with enough elements. - M. F. Hasler, Jul 27 2016
    
  • PARI
    generate(A, B, n) = A=max(A, 3^n); (f(m, p, k) = my(list=List()); if(sigma(m) > 2*m, return(list)); if(k==1, forprime(q=max(p, ceil(A/m)), B\m, my(t=m*q); if(sigma(t) > 2*t, my(F=factor(t)[,1], ok=1); for(i=1, #F, if(sigma(t\F[i], -1) > 2, ok=0; break)); if(ok, listput(list, t)))), forprime(q = p, sqrtnint(B\m, k), list=concat(list, f(m*q, q, k-1)))); list); vecsort(Vec(f(1, 3, n)));
    a(n) = my(x=3^n, y=2*x); while(1, my(v=generate(x, y, n)); if(#v >= 1, return(v[1])); x=y+1; y=2*x); \\ Daniel Suteu, Feb 10 2024

Extensions

a(12)-a(15) from Lars Blomberg, Apr 09 2018
a(16)-a(25) from Daniel Suteu, Feb 10 2024