cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A275452 G.f.: 3F2([1/9, 4/9, 7/9], [1/3, 1], 729 x).

This page as a plain text file.
%I A275452 #17 Aug 10 2016 03:42:05
%S A275452 1,84,32760,16302000,9020711700,5299182393120,3234930051733380,
%T A275452 2028415806982164600,1297264109283593451000,842341453312777393815840,
%U A275452 553562736218491223861661024,367351669654325623384052435136,245756466255265144369306647476400
%N A275452 G.f.: 3F2([1/9, 4/9, 7/9], [1/3, 1], 729 x).
%C A275452 "Other hypergeometric 'blind spots' for Christol’s conjecture" - (see Bostan link).
%H A275452 Gheorghe Coserea, <a href="/A275452/b275452.txt">Table of n, a(n) for n = 0..300</a>
%H A275452 A. Bostan, S. Boukraa, G. Christol, S. Hassani, J-M. Maillard <a href="http://arxiv.org/abs/1211.6031">Ising n-fold integrals as diagonals of rational functions and integrality of series expansions: integrality versus modularity</a>, arXiv:1211.6031 [math-ph], 2012.
%F A275452 G.f.: hypergeom([1/9, 4/9, 7/9], [1/3, 1], 729*x).
%F A275452 From _Vaclav Kotesovec_, Jul 31 2016: (Start)
%F A275452 Recurrence: n^2*(3*n - 2)*a(n) = 3*(9*n - 8)*(9*n - 5)*(9*n - 2)*a(n-1).
%F A275452 a(n) ~ Gamma(1/3) * 3^(6*n) / (Gamma(1/9) * Gamma(4/9) * Gamma(7/9) * n).
%F A275452 a(n) ~ 2^(2/9) * Gamma(1/3) * sin(Pi/9) * 3^(6*n) / (sqrt(Pi) * Gamma(4/9) * Gamma(7/18) * n).
%F A275452 (End)
%F A275452 a(n) = (729^n * Gamma(1/3) * Gamma(1/9 + n) * Gamma(4/9+n) * Gamma(7/9 + n))/(n!^2*Gamma(1/9) * Gamma(4/9) * Gamma(7/9) * Gamma(1/3 + n)). - _Benedict W. J. Irwin_, Aug 09 2016
%e A275452 1 + 84*x + 32760*x^2 + ...
%t A275452 CoefficientList[Series[HypergeometricPFQ[{1/9, 4/9, 7/9}, {1/3, 1}, 729*x], {x, 0, 20}], x] (* _Vaclav Kotesovec_, Jul 31 2016 *)
%t A275452 FullSimplify[Table[(729^n Gamma[1/3] Gamma[1/9 + n] Gamma[4/9 + n] Gamma[7/9 + n])/((n!)^2 Gamma[1/9] Gamma[4/9] Gamma[7/9] Gamma[1/3 + n]), {n, 0, 20}]] (* _Benedict W. J. Irwin_, Aug 09 2016 *)
%o A275452 (PARI) \\ system("wget http://www.jjj.de/pari/hypergeom.gpi");
%o A275452 read("hypergeom.gpi");
%o A275452 N = 12; x = 'x + O('x^N);
%o A275452 hypergeom([1/9, 4/9, 7/9], [1/3, 1], 729*x, N)
%Y A275452 Cf. A268545-A268555, A275051-A275054.
%K A275452 nonn
%O A275452 0,2
%A A275452 _Gheorghe Coserea_, Jul 30 2016