This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A275457 #22 Nov 19 2024 02:41:17 %S A275457 1,120,45045,21707400,11708971560,6735720993408,4039678502036100, %T A275457 2494516661768577600,1573990406710539567750,1009797626141015909237040, %U A275457 656436978973434195655059942,431326871057383042747830748560,285942228994752084893009228453460,190985447073724962020463006948873600 %N A275457 G.f.: 3F2([2/9, 4/9, 5/9], [1/3, 1], 729 x). %C A275457 "Other hypergeometric 'blind spots' for Christol’s conjecture" - (see Bostan link). %H A275457 Gheorghe Coserea, <a href="/A275457/b275457.txt">Table of n, a(n) for n = 0..300</a> %H A275457 A. Bostan, S. Boukraa, G. Christol, S. Hassani, J-M. Maillard <a href="http://arxiv.org/abs/1211.6031">Ising n-fold integrals as diagonals of rational functions and integrality of series expansions: integrality versus modularity</a>, arXiv:1211.6031 [math-ph], 2012. %F A275457 G.f.: hypergeom([2/9, 4/9, 5/9], [1/3, 1], 729*x). %F A275457 From _Robert Israel_, Jan 20 2017: (Start) %F A275457 a(n) = (2/3)*729^n*Gamma(5/9+n)*Gamma(2/9+n)*Gamma(4/9+n)*sin((4/9)*Pi)*3^(1/2)/(Gamma(2/9)*Gamma(n+1)^2*Gamma(n+1/3)*Gamma(2/3)). %F A275457 D-finite with recurrence a(n+1) = 3*(5+9*n)*(2+9*n)*(4+9*n)*a(n)/((n+1)^2*(3*n+1)). %F A275457 a(n) ~ (2*sin(4*Pi/9)/(sqrt(3)*Gamma(2/9)*Gamma(2/3)))*729^n/n^(10/9). %F A275457 A007949(a(n)) = A053735(n). (End) %e A275457 1 + 120*x + 45045*x^2 + 21707400*x^3 + ... %p A275457 A[0]:= 1: %p A275457 for n from 0 to 20 do A[n+1]:= 3*(5+9*n)*(2+9*n)*(4+9*n)*A[n]/((n+1)^2*(3*n+1)) od: %p A275457 seq(A[i],i=0..21); # _Robert Israel_, Jan 20 2017 %t A275457 CoefficientList[HypergeometricPFQ[{2/9, 4/9, 5/9}, {1/3, 1}, 729 x] + O[x]^14, x] (* _Jean-François Alcover_, Sep 18 2018 *) %o A275457 (PARI) \\ system("wget http://www.jjj.de/pari/hypergeom.gpi"); %o A275457 read("hypergeom.gpi"); %o A275457 N = 12; x = 'x + O('x^N); %o A275457 Vec(hypergeom([2/9, 4/9, 5/9], [1/3, 1], 729*x, N)) %Y A275457 Cf. A007949, A053735, A268545-A268555, A275051-A275054. %K A275457 nonn %O A275457 0,2 %A A275457 _Gheorghe Coserea_, Jul 31 2016