This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A275459 #14 Apr 27 2024 07:46:05 %S A275459 1,240,111384,61056996,36134640360,22349791271808,14226080375707200, %T A275459 9239577908667986880,6091267058935364926620,4062233028933305475849600, %U A275459 2733980882372812975378956480,1853783080629966591378982417800,1264747920529034302126861656883140,867379957865303554725274256161714560 %N A275459 G.f.: 3F2([4/9, 5/9, 8/9], [2/3, 1], 729 x). %C A275459 "Other hypergeometric 'blind spots' for Christol’s conjecture" - (see Bostan link). %H A275459 Gheorghe Coserea, <a href="/A275459/b275459.txt">Table of n, a(n) for n = 0..300</a> %H A275459 A. Bostan, S. Boukraa, G. Christol, S. Hassani, J-M. Maillard <a href="http://arxiv.org/abs/1211.6031">Ising n-fold integrals as diagonals of rational functions and integrality of series expansions: integrality versus modularity</a>, arXiv:1211.6031 [math-ph], 2012. %F A275459 G.f.: hypergeom([4/9, 5/9, 8/9], [2/3, 1], 729*x). %F A275459 D-finite with recurrence n^2*(3*n-1)*a(n) -3*(9*n-5)*(9*n-4)*(9*n-1)*a(n-1)=0. - _R. J. Mathar_, Jul 27 2022 %F A275459 a(n) ~ Gamma(1/9) * (1 + 2*sin(Pi/18)) * 3^(6*n - 1/2) / (2*Pi*Gamma(1/3) * n^(7/9)). - _Vaclav Kotesovec_, Apr 27 2024 %e A275459 1 + 240*x + 111384*x^2 + 61056996*x^3 + ... %t A275459 HypergeometricPFQ[{4/9, 5/9, 8/9}, {2/3, 1}, 729 x] + O[x]^14 // CoefficientList[#, x]& (* _Jean-François Alcover_, Oct 23 2018 *) %o A275459 (PARI) \\ system("wget http://www.jjj.de/pari/hypergeom.gpi"); %o A275459 read("hypergeom.gpi"); %o A275459 N = 12; x = 'x + O('x^N); %o A275459 Vec(hypergeom([4/9, 5/9, 8/9], [2/3, 1], 729*x, N)) %Y A275459 Cf. A268545-A268555, A275051-A275054. %K A275459 nonn %O A275459 0,2 %A A275459 _Gheorghe Coserea_, Jul 31 2016