A275471 Number of ordered ways to write n as 4^k*(1+x^2+y^2)+z^2, where k,x,y,z are nonnegative integers with x <= y and x == y (mod 2).
1, 1, 1, 2, 3, 1, 1, 1, 2, 2, 1, 3, 3, 1, 1, 2, 3, 2, 2, 5, 5, 1, 1, 1, 3, 2, 2, 4, 2, 2, 1, 1, 2, 2, 2, 5, 6, 1, 2, 2, 4, 3, 1, 3, 5, 2, 1, 3, 2, 2, 3, 7, 5, 2, 3, 1, 4, 2, 1, 6, 2, 2, 2, 2, 4, 3, 3, 5, 8, 2, 1, 2, 6, 2, 3, 6, 4, 2, 1, 5
Offset: 1
Keywords
Examples
a(8) = 1 since 8 = 4*(1+0^2+0^2) + 2^2 with 0+0 even. a(31) = 1 since 31 = 4^0*(1+1^2+5^2) + 2^2 with 1+5 even. a(47) = 1 since 47 = 4^0*(1+1^2+3^2) + 6^2 with 1+3 even. a(79) = 1 since 79 = 4^0*(1+5^2+7^2)+2^2 with 5+7 even. a(1009) = 1 since 1009 = 4^2*(1+1^2+1^2) + 31^2 with 1+1 even. a(7793) = 1 since 7793 = 4^2*(1+12^2+18^2) + 17^2 with 12+18 even.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
- Zhi-Wei Sun, Refining Lagrange's four-square theorem, arXiv:1604.06723 [math.GM], 2016.
Programs
-
Mathematica
SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]] Do[r=0;Do[If[SQ[n-4^k*(1+2x^2+2y^2)],r=r+1],{k,0,Log[4,n]},{x,0,Sqrt[(n/4^k-1)/4]},{y,x,Sqrt[(n/4^k-1-2x^2)/2]}];Print[n," ",r];Continue,{n,1,80}]
Comments