cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A275486 Decimal expansion of Pi_3, the analog of Pi for generalized trigonometric functions of order p=3.

This page as a plain text file.
%I A275486 #29 Nov 07 2023 07:27:11
%S A275486 2,4,1,8,3,9,9,1,5,2,3,1,2,2,9,0,4,6,7,4,5,8,7,7,1,0,1,0,1,8,9,5,4,0,
%T A275486 9,7,6,3,7,8,7,5,4,9,9,7,4,5,6,9,8,7,4,3,4,0,9,3,1,7,9,9,1,3,8,5,0,8,
%U A275486 3,0,9,0,8,1,6,8,4,7,1,8,4,4,9,1,2,1,6,6,6,5,0,9,4,9,4,1,3,5,5,8,4,7
%N A275486 Decimal expansion of Pi_3, the analog of Pi for generalized trigonometric functions of order p=3.
%C A275486 The area of the circumcircle of a unit-area equilateral triangle. - _Amiram Eldar_, Aug 13 2020
%H A275486 David Edmunds and Jan Lang, <a href="https://people.math.osu.edu/lang.162/mypapers/P5.pdf">Generalizing trigonometric functions from different points of view</a>, 2009.
%H A275486 Shingo Takeuchi, <a href="https://arxiv.org/abs/1411.4778">A new form of the generalized complete elliptic integrals</a>, arXiv:1411.4778 [math.CA], 2014.
%F A275486 Pi_3 = 2*Pi/(3*sin(Pi/3)) = 2/3 * gamma(1/3) * gamma(2/3) = 4*Pi/(3 * sqrt(3)).
%F A275486 Pi_3 = Sum_{n>=1} 4/(9*n^2 - 9*n + 2).
%F A275486 Pi_3 = 2*Integral_{0..1} (1-x^3)^(-1/3) dx.
%F A275486 Equals 1 + A263498.
%F A275486 Equals Integral_{x=0..oo} 1/(1 + x^(3/2)) dx. - _Amiram Eldar_, Aug 13 2020
%F A275486 Equals Product_{p prime} (1 + Kronecker(-3, p)/p)^(-1) = Product_{p prime != 3} (1 - (-1)^(p mod 3)/p)^(-1). - _Amiram Eldar_, Nov 06 2023
%e A275486 2.41839915231229046745877101018954097637875499745698743409317991385...
%t A275486 RealDigits[4 Pi/(3 Sqrt[3]), 10, 102][[1]]
%o A275486 (PARI) 4*Pi/sqrt(27) \\ _Charles R Greathouse IV_, Aug 01 2016
%Y A275486 Cf. A240935 (reciprocal), A263498.
%K A275486 nonn,cons,easy
%O A275486 1,1
%A A275486 _Jean-François Alcover_, Jul 30 2016