This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A275490 #16 Dec 05 2020 04:54:14 %S A275490 1,1,5,1,6,15,1,7,21,35,1,8,27,56,70,1,9,33,77,126,126,1,10,39,98,182, %T A275490 252,210,1,11,45,119,238,378,462,330,1,12,51,140,294,504,714,792,495, %U A275490 1,13,57,161,350,630,966,1254,1287,715,1,14,63,182,406,756,1218,1716,2079,2002,1001 %N A275490 Square array of 5D pyramidal numbers, read by antidiagonals. %C A275490 Let F(r,n,d) = binomial(r+d-2,d-1)* ((r-1)*(n-2)+d) /d be the d-dimensional pyramidal numbers. Then A(n,k) = F(k,n,5). %C A275490 Sum of the n-th antidiagonal is binomial(n+4,7) + binomial(n+4,5) = A055797(n-1). - _Mathew Englander_, Oct 27 2020 %H A275490 Michael De Vlieger, <a href="/A275490/b275490.txt">Table of n, a(n) for n = 2..11176</a> (rows 2 <= n <= 150, flattened) %H A275490 <a href="/index/Ps#pyramidal_numbers">Index to sequences related to polygonal numbers</a> %F A275490 A(n+2,k) = Sum_{j=0..k-1} A080852(n,j). %F A275490 A(n,k) = binomial(k+3,4) + (n-2)*binomial(k+3,5). - _Mathew Englander_, Oct 27 2020 %e A275490 The array starts in rows n>=2 and columns k>=1 as %e A275490 1 5 15 35 70 126 210 330 495 715 1001 1365 1820 %e A275490 1 6 21 56 126 252 462 792 1287 2002 3003 4368 6188 %e A275490 1 7 27 77 182 378 714 1254 2079 3289 5005 7371 10556 %e A275490 1 8 33 98 238 504 966 1716 2871 4576 7007 10374 14924 %e A275490 1 9 39 119 294 630 1218 2178 3663 5863 9009 13377 19292 %e A275490 1 10 45 140 350 756 1470 2640 4455 7150 11011 16380 23660 %e A275490 1 11 51 161 406 882 1722 3102 5247 8437 13013 19383 28028 %e A275490 1 12 57 182 462 1008 1974 3564 6039 9724 15015 22386 32396 %e A275490 1 13 63 203 518 1134 2226 4026 6831 11011 17017 25389 36764 %t A275490 Table[Binomial[k + 3, 4] + (# - 2)*Binomial[k + 3, 5] &[m - k + 1], {m, 2, 12}, {k, m - 1}] // Flatten (* _Michael De Vlieger_, Nov 05 2020 *) %Y A275490 Cf. Row sums of A080852 (4D), A080851 (3D), A057145 (2D), A077028 (1D). %Y A275490 Cf. A055797. %K A275490 nonn,easy,tabl %O A275490 2,3 %A A275490 _R. J. Mathar_, Jul 30 2016