cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A275498 Number of n X 2 0..2 arrays with no element equal to any value at offset (-2,-1) (-2,0) or (-1,-1) and new values introduced in order 0..2.

Original entry on oeis.org

2, 9, 16, 28, 56, 104, 200, 380, 724, 1380, 2628, 5008, 9540, 18176, 34628, 65972, 125688, 239456, 456204, 869144, 1655864, 3154696, 6010220, 11450468, 21815044, 41561284, 79181152, 150853252, 287400512, 547545732, 1043165604, 1987403816
Offset: 1

Views

Author

R. H. Hardin, Jul 30 2016

Keywords

Examples

			Some solutions for n=4:
..0..1. .0..0. .0..0. .0..0. .0..1. .0..1. .0..1. .0..0. .0..0. .0..0
..1..1. .1..1. .1..1. .1..1. .1..1. .1..1. .1..1. .0..1. .0..1. .0..1
..2..2. .1..2. .1..2. .2..2. .2..2. .1..2. .1..2. .1..2. .1..2. .1..1
..0..0. .2..2. .2..0. .2..0. .2..0. .2..0. .0..0. .2..2. .1..2. .1..2
		

Crossrefs

Column 2 of A275504.

Formula

Empirical: a(n) = a(n-1) + 2*a(n-2) - a(n-4) for n>6.
Empirical g.f.: x*(2 + 7*x + 3*x^2 - 6*x^3 - 2*x^4 + x^5) / (1 - x - 2*x^2 + x^4). - Colin Barker, Feb 04 2019

A275499 Number of n X 3 0..2 arrays with no element equal to any value at offset (-2,-1) (-2,0) or (-1,-1) and new values introduced in order 0..2.

Original entry on oeis.org

5, 54, 80, 136, 232, 516, 1168, 2660, 6024, 13716, 31168, 70868, 161176, 366452, 833360, 1894996, 4309160, 9799012, 22282576, 50670228, 115222840, 262014052, 595814224, 1354867540, 3080938312, 7005983220, 15931445856, 36227745252
Offset: 1

Views

Author

R. H. Hardin, Jul 30 2016

Keywords

Examples

			Some solutions for n=4:
..0..1..2. .0..0..0. .0..0..1. .0..0..0. .0..1..0. .0..1..0. .0..0..0
..1..2..2. .1..2..1. .2..1..1. .0..1..2. .1..1..2. .0..1..2. .1..2..2
..1..2..0. .2..2..1. .2..1..2. .1..2..2. .1..2..2. .1..2..2. .1..2..1
..2..0..0. .0..0..0. .1..0..2. .1..2..0. .0..0..0. .2..2..0. .0..0..1
		

Crossrefs

Column 3 of A275504.

Formula

Empirical: a(n) = 2*a(n-1) + 2*a(n-2) - 2*a(n-3) - 4*a(n-4) + 3*a(n-5) + a(n-6) - a(n-7) for n>11.
Empirical g.f.: x*(5 + 44*x - 38*x^2 - 122*x^3 - 72*x^4 + 141*x^5 + 97*x^6 + 11*x^7 - 106*x^8 - 4*x^9 + 36*x^10) / ((1 - x)*(1 - x - 3*x^2 - x^3 + 3*x^4 - x^6)). - Colin Barker, Feb 04 2019

A275500 Number of nX4 0..2 arrays with no element equal to any value at offset (-2,-1) (-2,0) or (-1,-1) and new values introduced in order 0..2.

Original entry on oeis.org

14, 324, 400, 656, 988, 2628, 7140, 19368, 52864, 144228, 394248, 1077956, 2947432, 8062396, 22050256, 60314412, 164976924, 451256880, 1234335036, 3376282048, 9235192524, 25261198432, 69097304872, 189003117812, 516983415672
Offset: 1

Views

Author

R. H. Hardin, Jul 30 2016

Keywords

Comments

Column 4 of A275504.

Examples

			Some solutions for n=4
..0..0..0..1. .0..1..1..0. .0..0..1..2. .0..0..1..2. .0..0..1..2
..2..2..1..1. .1..2..0..0. .0..1..2..0. .0..1..2..2. .2..1..2..2
..2..1..1..2. .2..2..0..2. .1..1..2..0. .1..1..2..0. .1..1..2..0
..1..1..0..2. .0..0..1..1. .2..2..0..1. .2..2..0..0. .0..0..0..1
		

Crossrefs

Cf. A275504.

Formula

Empirical: a(n) = a(n-1) +8*a(n-2) -28*a(n-4) -9*a(n-5) +55*a(n-6) +16*a(n-7) -70*a(n-8) -9*a(n-9) +56*a(n-10) -28*a(n-12) +a(n-13) +8*a(n-14) -a(n-16) for n>20

A275501 Number of nX5 0..2 arrays with no element equal to any value at offset (-2,-1) (-2,0) or (-1,-1) and new values introduced in order 0..2.

Original entry on oeis.org

41, 1944, 2000, 3168, 4180, 13384, 43780, 143784, 470352, 1549756, 5114352, 16851668, 55718276, 183999596, 607959912, 2009783684, 6640967048, 21951863104, 72556631720, 239811612380, 792682822452, 2620034132264, 8660100023060
Offset: 1

Views

Author

R. H. Hardin, Jul 30 2016

Keywords

Comments

Column 5 of A275504.

Examples

			Some solutions for n=4
..0..1..2..1..1. .0..0..0..0..1. .0..0..0..0..0. .0..0..0..1..0
..1..2..2..0..0. .2..1..1..1..2. .1..1..1..1..1. .0..1..1..1..2
..1..2..0..0..2. .1..1..2..2..2. .2..2..2..2..2. .1..2..2..2..2
..0..0..0..1..1. .1..0..0..0..0. .0..0..0..0..0. .1..2..0..0..0
		

Crossrefs

Cf. A275504.

Formula

Empirical: a(n) = a(n-1) +16*a(n-2) -120*a(n-4) -55*a(n-5) +549*a(n-6) +319*a(n-7) -1772*a(n-8) -891*a(n-9) +4300*a(n-10) +1407*a(n-11) -7992*a(n-12) -1155*a(n-13) +11470*a(n-14) +a(n-15) -12854*a(n-16) +1155*a(n-17) +11372*a(n-18) -1407*a(n-19) -7960*a(n-20) +891*a(n-21) +4357*a(n-22) -320*a(n-23) -1820*a(n-24) +55*a(n-25) +560*a(n-26) -120*a(n-28) -a(n-29) +16*a(n-30) -a(n-32) for n>36

A275502 Number of nX6 0..2 arrays with no element equal to any value at offset (-2,-1) (-2,0) or (-1,-1) and new values introduced in order 0..2.

Original entry on oeis.org

122, 11664, 10000, 15296, 17712, 68080, 268152, 1063756, 4220952, 16808164, 66958736, 267555284, 1069442584, 4276248392, 17124441536, 68526589584, 274440666248, 1099065057188, 4401177662772, 17628768823132, 70603317991512
Offset: 1

Views

Author

R. H. Hardin, Jul 30 2016

Keywords

Comments

Column 6 of A275504.

Examples

			Some solutions for n=4
..0..0..0..0..1..1. .0..0..1..2..2..2. .0..0..0..1..1..1. .0..0..1..0..2..1
..1..2..2..1..2..2. .2..1..2..0..1..1. .1..1..1..1..2..0. .1..1..1..2..2..1
..2..2..1..1..2..0. .1..1..2..0..1..0. .1..2..2..2..0..0. .1..2..2..2..1..0
..0..0..0..0..0..1. .0..0..0..1..2..2. .2..0..0..0..0..1. .0..2..0..0..1..0
		

Crossrefs

Cf. A275504.

Formula

Empirical: a(n) = a(n-1) +32*a(n-2) -496*a(n-4) -285*a(n-5) +4881*a(n-6) +4147*a(n-7) -34777*a(n-8) -31747*a(n-9) +193564*a(n-10) +159250*a(n-11) -877342*a(n-12) -559729*a(n-13) +3305202*a(n-14) +1371918*a(n-15) -10462555*a(n-16) -2038881*a(n-17) +28064748*a(n-18) -2573*a(n-19) -64372540*a(n-20) +10287733*a(n-21) +127544223*a(n-22) -35738974*a(n-23) -220567144*a(n-24) +79285065*a(n-25) +335987479*a(n-26) -133564456*a(n-27) -453839772*a(n-28) +180266595*a(n-29) +545461852*a(n-30) -199009384*a(n-31) -583472166*a(n-32) +180690849*a(n-33) +554326040*a(n-34) -134105374*a(n-35) -466206332*a(n-36) +79652731*a(n-37) +345892063*a(n-38) -35882573*a(n-39) -225652263*a(n-40) +10312807*a(n-41) +129040364*a(n-42) -882*a(n-43) -64456638*a(n-44) -2039779*a(n-45) +27988146*a(n-46) +1372306*a(n-47) -10489437*a(n-48) -560497*a(n-49) +3358044*a(n-50) +159731*a(n-51) -905008*a(n-52) -31875*a(n-53) +201297*a(n-54) +4160*a(n-55) -35960*a(n-56) -285*a(n-57) +4960*a(n-58) -496*a(n-60) +a(n-61) +32*a(n-62) -a(n-64) for n>68

A275503 Number of nX7 0..2 arrays with no element equal to any value at offset (-2,-1) (-2,0) or (-1,-1) and new values introduced in order 0..2.

Original entry on oeis.org

365, 69984, 50000, 73856, 75024, 346528, 1643372, 7886280, 37846556, 182923008, 884628720, 4276847052, 20741192940, 100647222904, 488252256740, 2372706557348, 11527428408920, 56008813182076, 272332971514256
Offset: 1

Views

Author

R. H. Hardin, Jul 30 2016

Keywords

Comments

Column 7 of A275504.

Examples

			Some solutions for n=4
..0..0..1..2..1..0..1. .0..0..1..2..0..1..2. .0..0..0..1..1..2..2
..2..1..1..2..0..0..2. .0..1..1..2..0..1..2. .1..2..1..1..2..0..0
..2..1..2..0..0..2..2. .1..1..2..0..1..2..0. .1..2..1..2..2..0..1
..1..0..0..0..1..2..1. .1..2..0..0..1..2..0. .2..0..0..2..0..1..2
		

Crossrefs

Cf. A275504.

A275505 Number of 5 X n 0..2 arrays with no element equal to any value at offset (-2,-1) (-2,0) or (-1,-1) and new values introduced in order 0..2.

Original entry on oeis.org

12, 56, 232, 988, 4180, 17712, 75024, 317812, 1346268, 5702888, 24157816, 102334156, 433494436, 1836311904, 7778742048, 32951280100, 139583862444, 591286729880, 2504730781960, 10610209857724, 44945570212852
Offset: 1

Views

Author

R. H. Hardin, Jul 30 2016

Keywords

Examples

			Some solutions for n=4:
..0..1..1..2. .0..1..2..0. .0..0..1..1. .0..1..1..2. .0..0..0..0
..0..1..2..0. .1..2..2..0. .0..1..2..2. .1..1..2..0. .1..1..1..1
..1..2..0..0. .1..2..0..1. .1..2..2..0. .2..2..0..0. .1..2..2..2
..1..2..0..1. .2..0..0..1. .2..2..0..1. .2..0..0..1. .2..2..0..0
..2..0..1..1. .0..0..1..2. .2..0..0..1. .1..1..1..2. .0..0..1..1
		

Crossrefs

Row 5 of A275504.

Formula

Empirical: a(n) = 3*a(n-1) + 5*a(n-2) + a(n-3).
Conjectures from Colin Barker, Feb 04 2019: (Start)
G.f.: 4*x*(3 + 5*x + x^2) / ((1 + x)*(1 - 4*x - x^2)).
a(n) = (10*(-1)^n + (15-7*sqrt(5))*(2-sqrt(5))^n + (2+sqrt(5))^n*(15+7*sqrt(5))) / 10.
(End)

A275506 Number of 6 X n 0..2 arrays with no element equal to any value at offset (-2,-1) (-2,0) or (-1,-1) and new values introduced in order 0..2.

Original entry on oeis.org

24, 104, 516, 2628, 13384, 68080, 346528, 1763408, 8974288, 45670736, 232422608, 1182818704, 6019467984, 30633598480, 155897059664, 793373760912, 4037548401360, 20547436657936, 104567700792400, 532154167518352
Offset: 1

Views

Author

R. H. Hardin, Jul 30 2016

Keywords

Examples

			Some solutions for n=4:
..0..1..2..0. .0..1..1..1. .0..1..1..1. .0..0..1..0. .0..0..0..1
..1..2..2..0. .1..2..2..0. .1..1..2..2. .0..1..1..2. .1..1..1..1
..2..2..0..1. .1..2..0..0. .1..2..0..0. .1..1..2..2. .2..2..2..2
..2..0..1..1. .2..0..1..1. .2..0..0..1. .1..2..0..0. .0..0..0..0
..0..1..1..2. .2..0..1..2. .0..0..1..1. .2..0..0..1. .0..1..1..1
..0..1..2..2. .0..1..2..0. .0..1..2..2. .0..0..1..1. .2..2..2..2
		

Crossrefs

Row 6 of A275504.

Formula

Empirical: a(n) = 3*a(n-1) + 10*a(n-2) + 4*a(n-3) - 4*a(n-4) for n>5.
Empirical g.f.: 4*x*(6 + 8*x - 9*x^2 - 14*x^3 + 5*x^4) / (1 - 3*x - 10*x^2 - 4*x^3 + 4*x^4). - Colin Barker, Feb 04 2019

A275507 Number of 7 X n 0..2 arrays with no element equal to any value at offset (-2,-1) (-2,0) or (-1,-1) and new values introduced in order 0..2.

Original entry on oeis.org

48, 200, 1168, 7140, 43780, 268152, 1643372, 10069540, 61703488, 378096660, 2316847540, 14196847960, 86993404476, 533065762516, 3266444015616, 20015648328132, 122649024958372, 751551142797496, 4605247533843404
Offset: 1

Views

Author

R. H. Hardin, Jul 30 2016

Keywords

Examples

			Some solutions for n=4:
..0..1..1..1. .0..1..1..2. .0..1..1..1. .0..0..1..1. .0..0..1..2
..1..2..2..2. .1..1..2..0. .0..1..2..2. .1..1..2..2. .1..1..2..2
..2..2..0..0. .2..2..2..0. .1..2..2..0. .2..2..2..0. .1..2..2..0
..2..0..1..1. .2..0..0..1. .2..2..0..0. .2..0..0..0. .2..0..0..0
..0..1..1..2. .0..0..1..1. .2..0..0..1. .0..1..1..1. .0..0..1..1
..1..1..2..2. .0..1..1..2. .0..0..1..1. .0..1..2..2. .0..1..1..2
..1..2..0..0. .1..2..2..2. .0..1..2..2. .2..2..0..0. .1..2..2..0
		

Crossrefs

Row 7 of A275504.

Formula

Empirical: a(n) = 3*a(n-1) + 18*a(n-2) + 11*a(n-3) - 23*a(n-4) - 4*a(n-5) for n>6.
Empirical g.f.: 4*x*(12 + 14*x - 74*x^2 - 123*x^3 + 60*x^4 + 59*x^5) / (1 - 3*x - 18*x^2 - 11*x^3 + 23*x^4 + 4*x^5). - Colin Barker, Feb 04 2019

A275497 Number of n X n 0..2 arrays with no element equal to any value at offset (-2,-1), (-2,0) or (-1,-1) and new values introduced in order 0..2.

Original entry on oeis.org

1, 9, 80, 656, 4180, 68080, 1643372, 58423188, 3045734096, 235680645520, 26923774835716, 4558306996574952
Offset: 1

Views

Author

R. H. Hardin, Jul 30 2016

Keywords

Comments

Diagonal of A275504.

Examples

			Some solutions for n=4
..0..0..0..1. .0..1..2..2. .0..0..0..0. .0..1..2..2. .0..1..2..1
..2..1..1..1. .0..2..2..0. .0..1..1..1. .1..1..2..0. .0..1..2..0
..2..1..2..2. .2..2..0..1. .1..1..2..2. .1..2..0..0. .1..2..0..0
..0..0..0..0. .2..1..0..1. .2..2..2..0. .2..0..0..1. .1..2..0..1
		

Crossrefs

Cf. A275504.
Showing 1-10 of 10 results.