cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A275505 Number of 5 X n 0..2 arrays with no element equal to any value at offset (-2,-1) (-2,0) or (-1,-1) and new values introduced in order 0..2.

Original entry on oeis.org

12, 56, 232, 988, 4180, 17712, 75024, 317812, 1346268, 5702888, 24157816, 102334156, 433494436, 1836311904, 7778742048, 32951280100, 139583862444, 591286729880, 2504730781960, 10610209857724, 44945570212852
Offset: 1

Views

Author

R. H. Hardin, Jul 30 2016

Keywords

Examples

			Some solutions for n=4:
..0..1..1..2. .0..1..2..0. .0..0..1..1. .0..1..1..2. .0..0..0..0
..0..1..2..0. .1..2..2..0. .0..1..2..2. .1..1..2..0. .1..1..1..1
..1..2..0..0. .1..2..0..1. .1..2..2..0. .2..2..0..0. .1..2..2..2
..1..2..0..1. .2..0..0..1. .2..2..0..1. .2..0..0..1. .2..2..0..0
..2..0..1..1. .0..0..1..2. .2..0..0..1. .1..1..1..2. .0..0..1..1
		

Crossrefs

Row 5 of A275504.

Formula

Empirical: a(n) = 3*a(n-1) + 5*a(n-2) + a(n-3).
Conjectures from Colin Barker, Feb 04 2019: (Start)
G.f.: 4*x*(3 + 5*x + x^2) / ((1 + x)*(1 - 4*x - x^2)).
a(n) = (10*(-1)^n + (15-7*sqrt(5))*(2-sqrt(5))^n + (2+sqrt(5))^n*(15+7*sqrt(5))) / 10.
(End)